官方文档参考:

https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html#namedsharding-gives-a-way-to-express-shardings-with-names

本篇post的主要讲解的是:

jax.device_put(x, mesh_sharding(P(('a', 'b'), None)))



jax.device_put(x, mesh_sharding(P(('b', 'a'), None)))

的不同:

主机的四个CPU情况:

代码:

import os

import functools
from typing import Optional import numpy as np import jax
import jax.numpy as jnp from jax.experimental import mesh_utils
from jax.sharding import PositionalSharding # Create a Sharding object to distribute a value across devices:
sharding = PositionalSharding(mesh_utils.create_device_mesh((4,))) # Create an array of random values:
x = jax.random.normal(jax.random.PRNGKey(0), (8192, 8192))
# and use jax.device_put to distribute it across devices:
y = jax.device_put(x, sharding.reshape(2, 2))
jax.debug.visualize_array_sharding(y)

运行结果:


jax.device_put(x, mesh_sharding(P(('a', 'b'), None)))

代码:(行优先的方式展开GPU)

点击查看代码
from typing import Optional
import jax
from jax.sharding import Mesh
from jax.sharding import PartitionSpec
from jax.sharding import NamedSharding
from jax.experimental import mesh_utils P = PartitionSpec devices = mesh_utils.create_device_mesh((2, 2))
mesh = Mesh(devices, axis_names=('a', 'b')) from jax.sharding import PositionalSharding sharding = PositionalSharding(devices) x = jax.random.normal(jax.random.PRNGKey(0), (8192, 8192))
x = jax.device_put(x, sharding.reshape(4, 1)) devices = mesh_utils.create_device_mesh((2, 2))
default_mesh = Mesh(devices, axis_names=('a', 'b'))
def mesh_sharding(
pspec: PartitionSpec, mesh: Optional[Mesh] = None,
) -> NamedSharding:
if mesh is None:
mesh = default_mesh
return NamedSharding(mesh, pspec) y = jax.device_put(x, mesh_sharding(P(('a', 'b'), None)))
jax.debug.visualize_array_sharding(y)

运行结果:

jax.device_put(x, mesh_sharding(P(('b', 'a'), None)))

代码:(列优先的方式展开GPU)

点击查看代码
from typing import Optional
import jax
from jax.sharding import Mesh
from jax.sharding import PartitionSpec
from jax.sharding import NamedSharding
from jax.experimental import mesh_utils P = PartitionSpec devices = mesh_utils.create_device_mesh((2, 2))
mesh = Mesh(devices, axis_names=('a', 'b')) from jax.sharding import PositionalSharding sharding = PositionalSharding(devices) x = jax.random.normal(jax.random.PRNGKey(0), (8192, 8192))
x = jax.device_put(x, sharding.reshape(4, 1)) devices = mesh_utils.create_device_mesh((2, 2))
default_mesh = Mesh(devices, axis_names=('a', 'b'))
def mesh_sharding(
pspec: PartitionSpec, mesh: Optional[Mesh] = None,
) -> NamedSharding:
if mesh is None:
mesh = default_mesh
return NamedSharding(mesh, pspec) y = jax.device_put(x, mesh_sharding(P(('b', 'a'), None)))
jax.debug.visualize_array_sharding(y)

运行结果:

Jax计算框架的NamedSharding的reshape —— namedsharding-gives-a-way-to-express-shardings-with-names的更多相关文章

  1. Storm分布式实时流计算框架相关技术总结

    Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解S ...

  2. Spark Streaming实时计算框架介绍

    随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在 ...

  3. Storm实时计算框架的编程模式

    storm分布式流式计算框架. nimbus:主进程服务(职责就是任务的分配的,程序的分发) supervisor:工作进程服务(职责就是启动线程池,接受任务,运行任务,报告任务的运行状态) 注意容错 ...

  4. 开源图计算框架GraphLab介绍

    GraphLab介绍 GraphLab 是由CMU(卡内基梅隆大学)的Select 实验室在2010 年提出的一个基于图像处理模型的开源图计算框架.框架使用C++语言开发实现. 该框架是面向机器学习( ...

  5. 大数据计算框架Hadoop, Spark和MPI

    转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什 ...

  6. (第4篇)hadoop之魂--mapreduce计算框架,让收集的数据产生价值

    摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套ha ...

  7. Dream_Spark-----Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码

    Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码   本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运 ...

  8. 【流处理】Kafka Stream-Spark Streaming-Storm流式计算框架比较选型

    Kafka Stream-Spark Streaming-Storm流式计算框架比较选型 elasticsearch-head Elasticsearch-sql client NLPchina/el ...

  9. 【codenet】代码相似度计算框架调研 -- 把内容与形式分开

    首发于我的gitpages博客 https://helenawang.github.io/2018/10/10/代码相似度计算框架调研 代码相似度计算框架调研 研究现状 代码相似度计算是一个已有40年 ...

  10. Storm:分布式流式计算框架

    Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 由于Storm的处理组件都是分布式的,而且处理 ...

随机推荐

  1. OpenSpeedTest-Server局域网速度测试服务程序

    OpenSpeedTest-Server局域网速度测试服务程序,局域网测速.

  2. JavaScript防抖与节流笔记

    JavaScript防抖与节流 概念 防抖(debounce)与节流(throttle)是两个相似但有本质区别的两个概念,但两个概念的存在都是为了控制在特定条件下函数最大的执行次数.这在例如将函数执行 ...

  3. 3. Elasticsearch 索引基本操作

    引言 上一篇教大家安装了Elasticsearch-head插件和kibana可视化分析工具,今天就教大家在kibana的dev-tool里的控制台中如何操作索引 基础概念 索引(index) 索引( ...

  4. maven依赖关系及打包及阿里云仓库地址

    https://developer.aliyun.com/mvn/search 阿里云仓库地址,可以搜索 <repositories> <repository> <id& ...

  5. idea编译报错 Lombok运行测试类报错 jar依赖冲突解决

    idea编译报错 Lombok运行测试类报错 jar依赖冲突解决 1.现象是idea编译,运行项目的时候是没有问题,可以正常跑起来.2.运行junit测试类的时候,报错提示 lombok找不到类,解决 ...

  6. CNN -- Simple Residual Network

    Smiling & Weeping ---- 我爱你,从这里一直到月亮,再绕回来 说明: 1.要解决的问题:梯度消失 2. 跳连接,H(x) = F(x)+x,张量维度必须一致,加完后再激活. ...

  7. 一些常见功能的查询sql

    Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` 一些常见功能的查询sql 日期:2019-4-10 阿珏 ...

  8. 用CSS3绘制iPhone手机

    Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` 用CSS3绘制iPhone手机 日期:2017-7-3 阿 ...

  9. C++与Unity C#交互

    C++与Unity C#交互 C++转C#小工具:https://github.com/jaredpar/pinvoke-interop-assistant C++ Custom.h #pragma ...

  10. Nuxt3 的生命周期和钩子函数(十一)

    title: Nuxt3 的生命周期和钩子函数(十一) date: 2024/7/5 updated: 2024/7/5 author: cmdragon excerpt: 摘要:本文详细介绍了Nux ...