(续 2 )在深度计算框架MindSpore中如何对不持续的计算进行处理——对数据集进行一定epoch数量的训练后,进行其他工作处理,再返回来接着进行一定epoch数量的训练——单步计算
内容接前文:
https://www.cnblogs.com/devilmaycry812839668/p/14988686.html
https://www.cnblogs.com/devilmaycry812839668/p/14990021.html
前面是我们自己按照个人理解实现的单步计算,随着对这个计算框架MindSpore的深入了解我们了解到其实官方是提供了单步计算函数的。
具体函数:
from mindspore.nn import TrainOneStepCell, WithLossCell
根据官方资料:
根据官方提供的函数,给出如下代码:
import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor
from mindspore.nn import TrainOneStepCell, WithLossCell class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
# model = Model(net, loss, optim, metrics={'loss': nn.Loss()})
net_with_criterion = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_criterion, optim) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32)
x = Tensor(x)
y = Tensor(y) for i in range(20000*100):
#print(i, '\t', '*' * 100)
train_network.set_train()
res = train_network(x, y) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)
运行时间:
1158.24s
1154.29s
1152.69s
=====================================================
前文我们给出的单步计算 model.train 的代码修改如下:
import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(1):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) for i in range(20000*100):
#print(i, '\t', '*' * 100)
model.train(1, dataset, dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)
运行时间:
2173.19s
2181.61s
==================================================================
可以看到,在单步计算时,如果使用框架提供的单步训练函数会更好的提升算法运算效率,运算效率提升的幅度也很大,所有在进行单步训练或者非持续数据量训练时使用框架提供的单步训练函数是首选。
单步训练函数:
from mindspore.nn import TrainOneStepCell, WithLossCell
=====================================================================
本文实验环境为 MindSpore1.1 docker版本
宿主机:Ubuntu18.04系统
CPU:I7-8700
GPU:1060ti NVIDIA显卡
(续 2 )在深度计算框架MindSpore中如何对不持续的计算进行处理——对数据集进行一定epoch数量的训练后,进行其他工作处理,再返回来接着进行一定epoch数量的训练——单步计算的更多相关文章
- 带你学习MindSpore中算子使用方法
摘要:本文分享下MindSpore中算子的使用和遇到问题时的解决方法. 本文分享自华为云社区<[MindSpore易点通]算子使用问题与解决方法>,作者:chengxiaoli. 简介 算 ...
- TensorFlow - 框架实现中的三种 Graph
文章目录 TensorFlow - 框架实现中的三种 Graph 1. Graph 2. GraphDef 3. MetaGraph 4. Checkpoint 5. 总结 TensorFlow - ...
- SSH框架应用中常用Jar包用途介绍
struts2需要的几个jar包:1)xwork-core-2.1.62)struts2-core-2.1.83)ognl-2.7.34)freemarker-2.3.155)commons-io-1 ...
- 如何在Crystal框架项目中内置启动MetaQ服务?
当Crystal框架项目中需要使用消息机制,而项目规模不大.性能要求不高时,可内置启动MetaQ服务器. 分步指南 项目引入crystal-extend-metaq模块,如下: <depende ...
- 如何在Crystal框架项目中内置启动Zookeeper服务?
当Crystal框架项目需要使用到Zookeeper服务时(如使用Dubbo RPC时,需要注册服务到Zookeeper),而独立部署和启动Zookeeper服务不仅繁琐,也容易出现错误. 在小型项目 ...
- 浅入深出之Java集合框架(中)
Java中的集合框架(中) 由于Java中的集合框架的内容比较多,在这里分为三个部分介绍Java的集合框架,内容是从浅到深,如果已经有java基础的小伙伴可以直接跳到<浅入深出之Java集合框架 ...
- Javscript调用iframe框架页面中函数的方法
Javscript调用iframe框架页面中函数的方法,可以实现iframe之间传值或修改值了, 访问iframe里面的函数: window.frames['CallCenter_iframe'].h ...
- 游戏框架设计中的。绑定binding。。。命令 command 和消息message 以及MVVM
游戏框架设计中的.绑定binding...命令 command 和消息message
- 关于MFC框架程序中CWinApp::OnIdle
很早之前就发现,我写的图形引擎在MFC框架程序中的刷帧率始终在60FPS左右.好在自己的程序对刷帧率的要求不是很高,所以一直没有太过纠结此事.直到今天看了别人的程序才发现应该在函数CWinApp::O ...
- TP框架模板中IF Else 如何使用?
TP框架模板中IF Else 如何使用? 截个图吧 如果效果出不来,一般就是条件写错了!!!
随机推荐
- C# .NET MVC 表单提交前校验数据等
页面上写2个button,一个普通button,另一个是submit,submit的这个隐藏.校验函数写在普通button里,普通button click函数中去提交表单. 页面: <input ...
- EF 结合 PagingModel
PagingModel pagingModel using (var db = new PayLogDbContext()) { var data = db.Database.Query<Mer ...
- 鸿蒙HarmonyOS实战-窗口管理
前言 窗口管理是指计算机操作系统中管理和控制窗口的一种机制.窗口管理器负责处理窗口的创建.关闭.移动.调整大小等操作,并且决定窗口的位置.层级.是否可见.是否接收用户输入等属性.窗口管理器还负责绘制窗 ...
- mysql中常用的三种插入数据的语句
mysql中常用的三种插入数据的语句: insert into表示插入数据,数据库会检查主键(PrimaryKey),如果出现重复会报错: replace into表示插入替换数据,需求表中有Prim ...
- 如何判断APP页面是原生还是H5
如何判断APP页面是原生还是H5 1.打开设置,搜索"开发者选项",点击"开发者选项" 华为手机进入开发者模式方法 1.打开华为手机的[设置],找到并点击进入[ ...
- es语法 rest api 模拟根据歌手,歌名,歌词来搜索demo
#创建索引songs_v1 PUT { - "acknowledged": true, "shards_acknowledged": true, "i ...
- CNN --Inception Module
Smiling & Weeping ---- 祝你想我 在平静的湖面 不止在失控的雪山之前 说明:Inception Module 1. 卷积核超参数选择困难,自动找到卷积的最佳组合 2. 1 ...
- 幻想领域图床系统V1.2正式版发布
Tips:当你看到这个提示的时候,说明当前的文章是由原emlog博客系统搬迁至此的,文章发布时间已过于久远,编排和内容不一定完整,还请谅解` 幻想领域图床系统V1.2正式版发布 日期:2018-4-1 ...
- 初识 SpringMVC,运行配置第一个Spring MVC 程序
1. 初识 SpringMVC,运行配置第一个Spring MVC 程序 @ 目录 1. 初识 SpringMVC,运行配置第一个Spring MVC 程序 1.1 什么是 MVC 2. Spring ...
- C#中重写(override)及覆盖(new)的区别详解
1. 重写和覆盖的定义 1.1 重写(override)的定义 在C#中,用override关键字来重写一个父类中的虚方法或抽象方法.override关键字用于指示编译器,我要用派生类中的一个方法 ...