(续 2 )在深度计算框架MindSpore中如何对不持续的计算进行处理——对数据集进行一定epoch数量的训练后,进行其他工作处理,再返回来接着进行一定epoch数量的训练——单步计算
内容接前文:
https://www.cnblogs.com/devilmaycry812839668/p/14988686.html
https://www.cnblogs.com/devilmaycry812839668/p/14990021.html
前面是我们自己按照个人理解实现的单步计算,随着对这个计算框架MindSpore的深入了解我们了解到其实官方是提供了单步计算函数的。
具体函数:
from mindspore.nn import TrainOneStepCell, WithLossCell
根据官方资料:
根据官方提供的函数,给出如下代码:
import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor
from mindspore.nn import TrainOneStepCell, WithLossCell class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
# model = Model(net, loss, optim, metrics={'loss': nn.Loss()})
net_with_criterion = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_criterion, optim) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32)
x = Tensor(x)
y = Tensor(y) for i in range(20000*100):
#print(i, '\t', '*' * 100)
train_network.set_train()
res = train_network(x, y) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)
运行时间:
1158.24s
1154.29s
1152.69s
=====================================================
前文我们给出的单步计算 model.train 的代码修改如下:
import mindspore
import numpy as np # 引入numpy科学计算库
import matplotlib.pyplot as plt # 引入绘图库 np.random.seed(123) # 随机数生成种子 import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore import ParameterTuple, Parameter
from mindspore import dtype as mstype
from mindspore import Model
import mindspore.dataset as ds
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import LossMonitor class Net(nn.Cell):
def __init__(self, input_dims, output_dims):
super(Net, self).__init__()
self.matmul = ops.MatMul() self.weight_1 = Parameter(Tensor(np.random.randn(input_dims, 128), dtype=mstype.float32), name='weight_1')
self.bias_1 = Parameter(Tensor(np.zeros(128), dtype=mstype.float32), name='bias_1')
self.weight_2 = Parameter(Tensor(np.random.randn(128, 64), dtype=mstype.float32), name='weight_2')
self.bias_2 = Parameter(Tensor(np.zeros(64), dtype=mstype.float32), name='bias_2')
self.weight_3 = Parameter(Tensor(np.random.randn(64, output_dims), dtype=mstype.float32), name='weight_3')
self.bias_3 = Parameter(Tensor(np.zeros(output_dims), dtype=mstype.float32), name='bias_3') def construct(self, x):
x1 = self.matmul(x, self.weight_1) + self.bias_1
x2 = self.matmul(x1, self.weight_2) + self.bias_2
x3 = self.matmul(x2, self.weight_3) + self.bias_3
return x3 def main():
net = Net(1, 1)
# loss function
loss = nn.MSELoss()
# optimizer
optim = nn.SGD(params=net.trainable_params(), learning_rate=0.000001)
# make net model
model = Model(net, loss, optim, metrics={'loss': nn.Loss()}) # 数据集
x, y = np.array([[0.1]], dtype=np.float32), np.array([[0.1]], dtype=np.float32) def generator_multidimensional():
for i in range(1):
a = x*i
b = y*i
#print(a, b)
yield (a, b) dataset = ds.GeneratorDataset(source=generator_multidimensional, column_names=["input", "output"]) for i in range(20000*100):
#print(i, '\t', '*' * 100)
model.train(1, dataset, dataset_sink_mode=False) # right
# False, False
# False, True
# True, True xxx # not right
# True, False if __name__ == '__main__':
""" 设置运行的背景context """
from mindspore import context # 为mindspore设置运行背景context
#context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') import time a = time.time()
main()
b = time.time()
print(b-a)
运行时间:
2173.19s
2181.61s
==================================================================
可以看到,在单步计算时,如果使用框架提供的单步训练函数会更好的提升算法运算效率,运算效率提升的幅度也很大,所有在进行单步训练或者非持续数据量训练时使用框架提供的单步训练函数是首选。
单步训练函数:
from mindspore.nn import TrainOneStepCell, WithLossCell
=====================================================================
本文实验环境为 MindSpore1.1 docker版本
宿主机:Ubuntu18.04系统
CPU:I7-8700
GPU:1060ti NVIDIA显卡
(续 2 )在深度计算框架MindSpore中如何对不持续的计算进行处理——对数据集进行一定epoch数量的训练后,进行其他工作处理,再返回来接着进行一定epoch数量的训练——单步计算的更多相关文章
- 带你学习MindSpore中算子使用方法
摘要:本文分享下MindSpore中算子的使用和遇到问题时的解决方法. 本文分享自华为云社区<[MindSpore易点通]算子使用问题与解决方法>,作者:chengxiaoli. 简介 算 ...
- TensorFlow - 框架实现中的三种 Graph
文章目录 TensorFlow - 框架实现中的三种 Graph 1. Graph 2. GraphDef 3. MetaGraph 4. Checkpoint 5. 总结 TensorFlow - ...
- SSH框架应用中常用Jar包用途介绍
struts2需要的几个jar包:1)xwork-core-2.1.62)struts2-core-2.1.83)ognl-2.7.34)freemarker-2.3.155)commons-io-1 ...
- 如何在Crystal框架项目中内置启动MetaQ服务?
当Crystal框架项目中需要使用消息机制,而项目规模不大.性能要求不高时,可内置启动MetaQ服务器. 分步指南 项目引入crystal-extend-metaq模块,如下: <depende ...
- 如何在Crystal框架项目中内置启动Zookeeper服务?
当Crystal框架项目需要使用到Zookeeper服务时(如使用Dubbo RPC时,需要注册服务到Zookeeper),而独立部署和启动Zookeeper服务不仅繁琐,也容易出现错误. 在小型项目 ...
- 浅入深出之Java集合框架(中)
Java中的集合框架(中) 由于Java中的集合框架的内容比较多,在这里分为三个部分介绍Java的集合框架,内容是从浅到深,如果已经有java基础的小伙伴可以直接跳到<浅入深出之Java集合框架 ...
- Javscript调用iframe框架页面中函数的方法
Javscript调用iframe框架页面中函数的方法,可以实现iframe之间传值或修改值了, 访问iframe里面的函数: window.frames['CallCenter_iframe'].h ...
- 游戏框架设计中的。绑定binding。。。命令 command 和消息message 以及MVVM
游戏框架设计中的.绑定binding...命令 command 和消息message
- 关于MFC框架程序中CWinApp::OnIdle
很早之前就发现,我写的图形引擎在MFC框架程序中的刷帧率始终在60FPS左右.好在自己的程序对刷帧率的要求不是很高,所以一直没有太过纠结此事.直到今天看了别人的程序才发现应该在函数CWinApp::O ...
- TP框架模板中IF Else 如何使用?
TP框架模板中IF Else 如何使用? 截个图吧 如果效果出不来,一般就是条件写错了!!!
随机推荐
- SpringMVC 工作原理?
a.客户端发送请求到 DispatcherServlet b.DispatcherServlet 查询 handlerMapping 找到处理请求的 Controller c.Controller 调 ...
- JSONObject应用Json字符串和Object对象之间的转换,Map封装数据思路
JSONObject应用Json字符串和Object对象之间的转换,Map封装数据思路 package com.example.core.mydemo.json5; import com.alibab ...
- 报错解决 :Resolved [org.springframework.web.bind.MissingServletRequestParameterException
报错解决 :Resolved [org.springframework.web.bind.MissingServletRequestParameterException 解决方法:RequestPar ...
- WPF/C#:显示分组数据的两种方式
前言 本文介绍自己在遇到WPF对数据进行分组显示的需求时,可以选择的两种方案.一种方案基于ICollectionView,另一种方案基于IGrouping. 基于ICollectionView实现 相 ...
- Pytorch复制现有环境
一,在本机上,打开anaconda Prompt直接使用 conda create -n 新环境名 --clone 旧环境名
- 19-Docker数据持久化
什么是Docker数据持久化 容器在运行时会在镜像层上加上一层:可写层. 当删除容器时,可写层就会一起被删除,数据丢失. 数据持久化就是就是将数据持久化保存,删除容器之后,数据仍然存在. 方法1-挂载 ...
- 为什么不推荐使用Linq?
相信很多.NETer看了标题,都会忍不住好奇,点进来看看,并且顺便准备要喷作者! 这里,首先要申明一下,作者本人也非常喜欢Linq,也在各个项目中常用Linq. 我爱Linq,Linq优雅万岁!!!( ...
- Django-CBV和跨域请求伪造
1. django模式 def users(request): user_list = ['alex','oldboy'] return HttpResponse(json.dumps((user_l ...
- Android 各层架构
Android应用框架层和硬件抽象层以及底层之间的关系 1. JNI技术: (1).JNI技术简单的说就是在本地Java语言声明本地方法和加载动态链接库(.so文件) (2).动态链接库(.so文件) ...
- C#去除时间格式化之后中间的T字母
需求是这样的, 前后端传参,然后后端序列化把字符串存在数据库. 然后发现时间类型的字段,序列化之后 ,有个字母T, DateTime dt = DateTime.Parse("2024-05 ...