HDU 3896 Greatest TC 双连通分量
题意
给一个连通的无向图,有两种询问:
- \(a, b, c, d\),问如果删掉\(c,d\)之间的边,\(a,b\)之间是否还连通
- \(a, b, c\),问如果删掉顶点\(c\),\(a,b\)之间是否还连通
分析
首先DFS一遍求出进入节点的时间戳\(pre(u)\),离开节点的时间戳\(post(u)\)以及当前节点的子树中能连接到的最小的DFS序\(low(u)\)。
然后预处理一下\(u\)的\(2^i\)级祖先,方便计算\(u\)的任意级祖先。
考虑第一种查询
不妨设\(c\)是\(d\)的儿子节点,如果\(c,d\)之间是一个桥并且\(a,b\)两个节点一个在\(c\)的子树中一个不在,这种情况下是不连通的。
其他情况都是连通的。
考虑第二种查询
分成三种情况讨论:
\(a,b\)都在子树\(c\)中,如果\(a,b\)在\(c\)的同一个儿子子树中那么去掉\(c\)是连通的。
否则,让\(a,b\)往上跳,变成\(c\)的两个儿子。如果\(low(a) \geq pre(c)\)或\(low(b) \geq pre(c)\)有一个成立,那么是不连通的。\(a,b\)只有一个在子树\(c\)中,由于对称性,不妨假设\(a\)在子树\(c\)中。
同样让\(a\)往上跳,变成\(c\)的儿子。如果\(low(a) \geq pre(c)\)那么不连通,否则连通。\(a,b\)都不在子树\(c\)中,那么去掉\(c\)完全没有任何影响,所以还是连通的。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100000 + 10;
const int maxm = 1000000 + 10;
struct Edge
{
int v, nxt;
Edge() {}
Edge(int v, int nxt): v(v), nxt(nxt) {}
};
int ecnt, head[maxn];
Edge edges[maxm];
void AddEdge(int u, int v) {
edges[ecnt] = Edge(v, head[u]); head[u] = ecnt++;
edges[ecnt] = Edge(u, head[v]); head[v] = ecnt++;
}
int n, m;
int fa[maxn], dep[maxn];
int dfs_clock, pre[maxn], post[maxn], low[maxn];
bool isbridge[maxn], iscut[maxn];
void dfs(int u) {
bool flag = false;
int child = 0;
pre[u] = low[u] = ++dfs_clock;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u] && !flag) { flag = true; continue; }
child++;
if(!pre[v]) {
fa[v] = u;
dep[v] = dep[u] + 1;
dfs(v);
low[u] = min(low[u], low[v]);
if(low[v] >= pre[u]) {
iscut[u] = true;
if(low[v] > pre[u]) isbridge[v] = true;
}
} else low[u] = min(low[u], pre[v]);
}
if(u == 1 && child == 1) iscut[u] = false;
post[u] = dfs_clock;
}
int anc[maxn][20];
void preprocess() {
memset(anc, 0, sizeof(anc));
for(int i = 1; i <= n; i++) anc[i][0] = fa[i];
for(int j = 1; (1 << j) < n; j++)
for(int i = 1; i <= n; i++) if(anc[i][j-1])
anc[i][j] = anc[anc[i][j-1]][j-1];
}
int upward(int u, int x) {
for(int i = 0; i < 20; i++)
if((x >> i) & 1) u = anc[u][i];
return u;
}
int insubtree(int u, int v) {
if(pre[v] <= pre[u] && pre[u] <= post[v]) return 1;
return 0;
}
bool juedgeVertex(int a, int b, int c) {
int in1 = insubtree(a, c);
int in2 = insubtree(b, c);
if(in1 & in2) {
a = upward(a, dep[a] - dep[c] - 1);
b = upward(b, dep[b] - dep[c] - 1);
if(a == b) return true;
if(low[a] >= pre[c]) return false;
if(low[b] >= pre[c]) return false;
}
if(in1 ^ in2) {
if(!in1) swap(a, b);
a = upward(a, dep[a] - dep[c] - 1);
if(low[a] >= pre[c]) return false;
}
return true;
}
int main()
{
while(scanf("%d%d", &n, &m) == 2) {
ecnt = 0;
memset(head, -1, sizeof(head));
while(m--) {
int u, v;
scanf("%d%d", &u, &v);
AddEdge(u, v);
}
dfs_clock = 0;
memset(pre, 0, sizeof(pre));
memset(isbridge, false, sizeof(isbridge));
memset(iscut, false, sizeof(iscut));
dfs(1);
preprocess();
int q;
scanf("%d", &q);
while(q--) {
int op, a, b, c, d;
scanf("%d%d%d%d", &op, &a, &b, &c);
bool ok = true;
if(op == 1) {
scanf("%d", &d);
if(dep[c] < dep[d]) swap(c, d);
int in1 = insubtree(a, c);
int in2 = insubtree(b, c);
if(isbridge[c] && (in1 ^ in2) == 1) ok = false;
} else {
ok = juedgeVertex(a, b, c);
}
printf("%s\n", ok ? "yes" : "no");
}
}
return 0;
}
HDU 3896 Greatest TC 双连通分量的更多相关文章
- HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...
- HDU 4005 The war 双连通分量 缩点
题意: 有一个边带权的无向图,敌人可以任意在图中加一条边,然后你可以选择删除任意一条边使得图不连通,费用为被删除的边的权值. 求敌人在最优的情况下,使图不连通的最小费用. 分析: 首先求出边双连通分量 ...
- HDU 2460 Network 边双连通分量 缩点
题意: 给出一个无向连通图,有\(m\)次操作,每次在\(u, v\)之间加一条边,并输出此时图中桥的个数. 分析: 先找出边双连通分量然后缩点得到一棵树,树上的每条边都输原图中的桥,因此此时桥的个数 ...
- HDU3896 Greatest TC(双联通分量+倍增)
Problem Description TC (Tian Chao) is magical place, as you all know...The railways and the rail-sta ...
- HDU 2242 考研路茫茫——空调教室(边双连通分量+树形dp+重边标号)
http://acm.hdu.edu.cn/showproblem.php?pid=2242 题意: 思路:首先求一下双连通分量,如果只有一个双连通分量,那么无论断哪根管子,图还是连通的. 最后只需要 ...
- hdu 2460(tarjan求边双连通分量+LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...
- HDU 4612——Warm up——————【边双连通分量、树的直径】
Warm up Time Limit:5000MS Memory Limit:65535KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- HDU 4612 Warm up(2013多校2 1002 双连通分量)
Warm up Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Su ...
随机推荐
- vue 导出excel
1.安装三个依赖包 npm install -S file-saver npm install -S xlsx npm install -D script-loader 2.在项目中创建一个文件夹(比 ...
- $.ajax和$.load的区别
http://lib.csdn.net/article/jquery/35614?knId=646
- iOS多线程系统整理 swift
多线程 是一个应用程序内多个代码的执行路径,执行线程,同时在同一时间里执行不同的任务. 三种: 1.NSTread 2.Cocoa NSOperation (NSOperation,NSOpera ...
- Redis集群维护、运营的相关命令与工具介绍
Redis集群的搭建.维护.运营的相关命令与工具介绍 一.概述 此教程主要介绍redis集群的搭建(Linux),集群命令的使用,redis-trib.rb工具的使用,此工具是ruby语言写的,用于集 ...
- 初学基础python记录
1.对于python来说,最重要的就是缩进.相当于其他语言的{}中括号. 2.转义快捷等 alt+p和alt+n来复制上下一行.变量使用时得先赋值,且大小写敏感,遵循变量命名规则.Python还允许用 ...
- 使用SAP云平台的destination消费Internet上的OData service
通过SAP云平台上的destination我们可以消费Internet上的OData service或者其他通过HTTP方式暴露出来的服务. 创建一个新的destination: 维护如下属性: 点击 ...
- 防止sql注入方法 如何防止java中将MySQL的数据库验证密码加上 ' or '1'= '1 就可以出现万能密码 的PreparedStatement
package com.swift; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Prepar ...
- 牛客小白月赛1 G あなたの蛙は旅⽴っています【图存储】【DP】
题目链接:https://www.nowcoder.com/acm/contest/85/G 思路: DP 空间可以优化成一维的, 用一维数组的 0 号单元保存左斜对角的值即可. 存图这里真不好理解 ...
- 《转载》ASP动态iframe
原文:[ASP.NET]关于iframe的两个技巧 最近在给朋友写个网站,虽然不大,但是也碰到了一些问题.这篇就为解决ASP.NET中关于IFRAME的两个很现实的问题提供解决方法.PS:呵呵,又做了 ...
- Python学习——numpy.random
numpy.random.rand numpy.random模块作用是生成随机数,其中numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点 ...