在概率问题中,假设跟着日常经验与感觉走。常常会得到错误的答案。以下“抽钻石”的故事非常可以说明这一点。

题目一:某天电视台举办了这种一个游戏节目。主持人首先拿出三个盒子。已知这三个盒子中有一个里面装的是钻石,另外两个里面装的是石头。游戏的规则是这种:參赛者先选择一个他觉得里面是钻石的盒子,但并不打开。这样主持人手里剩下的两个盒子中至少有一个里面装的是石头。然后,主持人(他知道每一个盒子里装的是什么)为了帮助选手排除一个盒子。他打开了手中两个盒子中的一个,里面装的是石头。

这时主持人让參赛者又一次选择,是坚持自己一開始的选择。还是改变主意。选择主持人手中剩下的那一个?參赛者假设终于选择的盒子中装的是钻石的话,參赛者就可以得到这一颗钻石。

假设你是參赛者,那么。你将怎样选择以使自己得到钻石的几率更大一些?

看过这道题,非常多人都会认为太简单了,可是。大家未必能给出正确的答案。好,先不必急于回答,请看题目二后再给出答案。

题目二:情景如题目一。仅仅是主持人并不知道盒子里面装的是什么。当參赛者选中了第一个盒子时,主持人随机的打开了手中两个盒子中的一个,结果里面装的是石头。这时,參赛者能够做终于的选择。请问。假设你是參赛者,应怎样选择以使自己获得钻石的概率更大一些?

看过题目二后。非常多人都说了。这不是与题目一全然一样吗?两道题的答案都应当是:坚持原来的选择与改变选择,获得钻石的概率是一样的,均为50%。

假设你的回答跟上面的一样的话,我仅仅能非常抱歉的告诉你,你的回答是错误的。好,让我来告诉大家正确的答案:题目一答案为。应当改变选择。去选主持人手中的那一个盒子,这样。获得钻石的概率为2/3。

而题目二的答案是,无所谓。改不改变选择。获得钻石的概率均为1/2。

可能有的读者看到这里会不相信了,明明两道题目中发生的事件是一样的,怎么会有不同的答案?尽管题目一中主持人知道盒子中装的是什么。而二中主持人不知道。但他们做的事情是一模一样的啊?难道主持人知不知道也会对事件的概率产生影响,这也太唯心了吧!

好,以下让我们来分析一下这两道题目。

我们能够将參赛者第一次选择的盒子装的是钻石称为事件A,主持人打开的盒子中装着石头称为事件B。

在问题的分析中我们要用到条件概率公式:

P(A|B)=P(AB)/P(B)

当中P(A|B)为在事件B发生的条件下A发生的概率。P(AB)为A事件与B事件都发生的概率,P(B)为事件B发生的概率。显然坚持原来选择得到钻石的概率等于在主持人打开的盒子中装有石头的条件下,參赛者第一次选择的盒子中装有钻石的概率。即等于P(A|B)。

我们先来分析第二道题目。事件A发生的概率。也就是參赛者第一次选择的盒子中装有钻石的概率P(A)显然是1/3,因为主持人并不知道每一个盒子中装的是什么,而三个盒子中有两个装着石头,因此主持人随机打开的盒子中装有石头的概率,也就是事件B发生的概率P(B)为2/3。

我们再来讨论事件A与事件B都发生的概率,显然,假设參赛者第一次选的为钻石。则主持人打开的盒子一定是装着石头。即假设A事件发生,则B事件一定发生。所以P(AB)=P(A)=1/3。这样P(A|B)=(1/3)/(2/3)=1/2。

原来的选择(不换的概率是1/2,那么又一次选择,换的概率为1-1/2=1/2)。也就是说坚持原来的选择获得钻石的概率为1/2。

我们再来分析题目一,P(A)依旧是1/3,P(AB)也依旧是1/3。改变了的仅仅有P(B)。因为主持人知道盒子里装的是什么。所以他为了排除一个盒子应当打开一个有石头的。而他的两个盒子中至少有一个里面装的是石头。所以他打开的盒子中有石头的概率为1,即P(B)=1。

这样P(A|B)=(1/3)/1=1/3。所以坚持原来的选择仅仅能有三分之中的一个的概率得到钻石,而改变主意则有(1-1/3=2/3)三分之二的概率得到钻石,故应改变主意。

所以,在概率问题的分析中,我们不要凭感觉,而应当依照公式,一步一步的分析以得出最后的答案。以下再给出两道类似的概率题目,希望大家认真分析以得出正确的答案。

1  一个监狱看守从三个罪犯X、Y、Z中随机选择一个予以释放,其它两个将被处死。警卫知道哪个人将要被释放。于是。罪犯X私下问警卫有没有被释放,警卫不能透露不论什么关于他本人状态的信息。

于是警卫告诉X。Y将被处死。X感到非常高兴。由于他觉得他或者Z将被释放,这意味着他被释放的概率是1/2。

他正确吗?或者他的机会仍然是1/3?

2  警察决定在今晚对某犯罪分子实施抓捕。依据平日对此犯罪分子的研究。犯罪分子有70%概率晚上要去酒吧过夜。全城有7个酒吧。犯罪分子去各个酒吧的概率是一样的。警察搜过了当中的五个酒吧,还是没有发现犯罪分子。请问,警察在第六个酒吧中找到犯罪分子的概率?

答案:1  他想的是对的,释放的几率为1/2

2  在第六个酒吧找到犯罪分子的概率为20%

抽钻石vs中奖门 概率问题的更多相关文章

  1. JS简单实现:根据奖品权重计算中奖概率实现抽奖的方法

    本文主要介绍:使用 JS 根据奖品权重计算中奖概率实现抽奖的方法. 一.示例场景 1.1.设置抽奖活动的奖项名称 奖项名称:["一等奖", "二等奖", &qu ...

  2. PHP实现自定义中奖和概率算法

    最近玩<QQ飞车手游>,出了一款点券A车,需要消耗抽奖券抽奖,甚是激动,于是抽了几次,没想到中的都是垃圾道具,可恨可叹~~ 这几天项目中也涉及到了类似的概率操作,于是思考了一下,简单分装了 ...

  3. AI数学基础之:概率和上帝视角

    目录 简介 蒙题霍尔问题 上帝视角解决概率问题 上帝视角的好处 简介 天要下雨,娘要嫁人.虽然我们不能控制未来的走向,但是可以一定程度上预测为来事情发生的可能性.而这种可能性就叫做概率.什么是概率呢? ...

  4. 【概率DP入门】

    http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html 有关概率和期望问题的研究 摘要 在各类信息学竞赛中(尤其是ACM竞赛中) ...

  5. 概率DP自学

    转自https://blog.csdn.net/zy691357966/article/details/46776199 zy691357966的blog 有关概率和期望问题的研究 摘要 在各类信息学 ...

  6. 从 n 个数字中选出 m 个不同的数字,保证这 m 个数字是等概率的

    问题如上. 这是我被面试的一个题目. 我的第一反应给出的解决的方法是.开启  n 个线程并标记序号,各个线程打印出它的序号.直到有 m 个线程被调度时,停止全部线程. 打印出的序号即是 m 个等概率出 ...

  7. uva 10169 - Urn-ball Probabilities !(概率)

    题目链接:uva 10169 - Urn-ball Probabilities ! 题目大意:在一个箱子中,原本有1个红球,然后任意取出(有放回)一个球,然后再往里放一个白球(每次取都要放进一个白球) ...

  8. JAVA基于权重的抽奖

    https://blog.csdn.net/huyuyang6688/article/details/50480687 如有4个元素A.B.C.D,权重分别为1.2.3.4,随机结果中A:B:C:D的 ...

  9. 【EM算法】EM(转)

    Jensen不等式 http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 回顾优化理论中的一些概念.设f是定义域为实数的函数 ...

随机推荐

  1. 安装python 2.7

    安装包下载地址 windows:https://www.python.org/ftp/python/2.7.14/python-2.7.14.amd64.msi linux: https://www. ...

  2. hdu 4786(生成树)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. 微信小程序 图片路径自动加上文件目录导致渲染报错问题

    最近 在做小程序时候,发现一些商品图片在渲染时一直报错,也不显示,但是控制台打印出来 的路径却有没有问题 报错提示出错的路径会在前面自动加上“page/**”,思索了之后想到了微信只能解释https的 ...

  4. 初次使用git,记录使用步骤

      参考:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 https://git ...

  5. 两个本质相同的dp

    1.划分数 描述:给定数字N,将其划分为不超过K组,求不同的划分的总数(比如4——1 2 1,2 1 1就算做一种划分) 2.Dollar Dayz 描述:给定数字N,将其随意划分,但是组成数字不可以 ...

  6. Linux下设置开机启动

    新配置了vsftpd 需要设置ftp开机启动,linux新手,还不是很熟悉linux下的操作! 查询后发现命令是: chkconfig vsftpd on chkconfig命令用于设置运行级别   ...

  7. ASP.NET 5已终结,迎来ASP.NET Core 1.0和.NET Core 1.0 转

    作者:yourber 命名是非常困难的事情,微软这次为了和ASP.NET4.6做区分,采用了全新的命名方式ASP.NET Core 1.0,它是一个全新的框架. ASP.NET 在过去的 15 年里是 ...

  8. Java Web开发(JSP、Servlet)乱码的一揽子解决方案

    千万不要看网上那些杂七杂八的解决乱码的文章,解决乱码最好的方法是(没有之一):在所有地方统一采用UTF-8编码. 这其中包括: 1 - 工程 如果使用的是Eclipse,那么打开Preference, ...

  9. Linux下搭建PHP开发环境(LAMP)

    LAMP:Linux+Apache+Mysql/MariaDB+Perl/PHP/Python 一键安装方法如下: 注:Ubuntu下可使用sudo su 命名切换到root用户. 开始安装之前,先执 ...

  10. VS2010 MFC中 创建文件夹及文件判空的方法

    1. MFC中 创建文件夹的方法如下: CString strFolderPath = "./Output"; //判断路径是否存在 if(!PathIsDirectory(str ...