Topcoder SRM 666 DIV 1
WalkOverATree
题意:给你一棵树,有个人在节点0,现在问你,这个人走L步,最多能访问多少个不同的节点,一个节点可以被走多次,但只算一次。
题解:这个问题的关键在于,每个点最多走两次,这是因为我要么一次性走到这个点,要么从这个点回去走其他的点,不可能出现走三次的情况,这里需要细想清楚。
那么我们可以得到这样的一个算法:枚举一条一次性走的路径,想象成主干道,这个主干道上连接有若干旁道,那么我可以访问这个旁道上的某些点,然后返回主干道,这些点我一共要用两倍的步数才能走完,因为要返回主干道,并且容易发现,这对任意一个旁道都是一样的。
设d[i]表示i离根节点的距离,ans是最终的答案,那么ans=max(ans,d[i]+1+min(n-d[i]-1,(L-d[i])/2))。
SumOverPermutations
题意:
有个奇葩,组合数学很渣,老师问他:无限个n种颜色的球放在n个有顺序的盒子中,每个盒子放一个,相邻盒子的球的颜色不同,有多少种方法。这个奇葩给了个奇葩的解答,他说这和放的顺序有关,比如有三个盒子,三种颜色的球,若放的顺序是 1 2 3,那么答案就是3×2×2,若放的顺序是 1 3 2,那么答案就是3×3×1。更一般的,他认为,若一个位置的左侧和右侧都被放了,那么现在有(n-2)种可能性,若只有一侧被放了,那么有(n-1)种可能性,若两侧都没放,那么有n种可能性。我们知道这是明显错误的,但是,题目就是问你,给你个n,这n!种放的顺序按照这个奇葩的算法得到的答案是多少。
题解:
令$dp[i]$表示$n$种颜色放在$i$个盒子中,答案是多少。那么转移就只有两种情况:
一种是将第$i$个球放在边界上,这种的转移是$dp[i]=2*dp[i-1]*(n-1)$,第一项的2表示左右两个边界,第二项$dp[i-1]$表示$i-1$时的情况,第三项$n-1$表示由于第$i$个球在边界,所以只乘$n-1$
另外一种是将第$i$个球放在中间某个位置,假设其左侧有$j$个球,那么转移必然是
$$dp[i]=\sum\limits_{j=1}^{i-2}C_{i-1}^j*dp[j]*dp[i-j-1]*(n-2)$$
所以总的转移是
$$dp[i]=(\sum\limits_{j=1}^{i-2}C_{i-1}^j*dp[j]*dp[i-j-1]*(n-2))+2*dp[i-1]*(n-1)$$
答案显然是$dp[n]$
long long dp[MAX_N];
long long mod=;
long long C[MAX_N][MAX_N]; class SumOverPermutations
{
public:
int findSum(int n)
{
C[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
C[i][j]=(j==?:C[i-][j-]+C[i-][j])%mod;
dp[]=n%mod;
dp[]=n%mod*(n-)%mod*%mod;
for(int i=;i<=n;i++){
dp[i]=%mod*(n-)%mod*dp[i-]%mod;
for(int j=;j<=i-;j++)
dp[i]=(dp[i]+C[i-][j]%mod*dp[j]%mod*dp[i-j-]%mod*(n-)%mod)%mod;
}
return dp[n]%mod;
}
};
Topcoder SRM 666 DIV 1的更多相关文章
- TopCoder SRM 560 Div 1 - Problem 1000 BoundedOptimization & Codeforces 839 E
传送门:https://284914869.github.io/AEoj/560.html 题目简述: 定义"项"为两个不同变量相乘. 求一个由多个不同"项"相 ...
- TopCoder SRM 667 Div.2题解
概览: T1 枚举 T2 状压DP T3 DP TopCoder SRM 667 Div.2 T1 解题思路 由于数据范围很小,所以直接枚举所有点,判断是否可行.时间复杂度O(δX × δY),空间复 ...
- Topcoder SRM 656 (Div.1) 250 RandomPancakeStack - 概率+记忆化搜索
最近连续三次TC爆零了,,,我的心好痛. 不知怎么想的,这题把题意理解成,第一次选择j,第二次选择i后,只能从1~i-1.i+1~j找,其实还可以从j+1~n中找,只要没有被选中过就行... [题意] ...
- [topcoder]SRM 646 DIV 2
第一题:K等于1或者2,非常简单.略.K更多的情况,http://www.cnblogs.com/lautsie/p/4242975.html,值得思考. 第二题:http://www.cnblogs ...
- [topcoder]SRM 633 DIV 2
第一题,http://community.topcoder.com/stat?c=problem_statement&pm=13462&rd=16076 模拟就可以了. #includ ...
- TopCoder SRM 596 DIV 1 250
body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...
- Topcoder SRM 648 (div.2)
第一次做TC全部通过,截图纪念一下. 终于蓝了一次,也是TC上第一次变成蓝名,下次就要做Div.1了,希望div1不要挂零..._(:зゝ∠)_ A. KitayutaMart2 万年不变的水题. # ...
- 【topcoder SRM 702 DIV 2 250】TestTaking
Problem Statement Recently, Alice had to take a test. The test consisted of a sequence of true/false ...
- TopCoder SRM 639 Div.2 500 AliceGameEasy
题意: 一个游戏有n轮,有A和B比赛,谁在第 i 轮得胜,就获得 i 分,给出x,y,问A得x分,B得y分有没有可能,如果有,输出A最少赢的盘数 解题思路: 首先判断n(n+1)/2 = (x+y)是 ...
随机推荐
- day40--mysql step4 SQLAlchemy
1.unique = True 表示启动唯一索 2.有add 必须有commit这样数据才会提交 3.ORM功能 #!/usr/bin/env python # -*- coding:utf-8 -* ...
- Asp.net自定义控件开发任我行(2)-TagPrefix标签
摘要 前面我们已经做了一个最简单的TextBox的马甲,此篇文章,我们来讲讲自定义控件的标签.大家可能看到了上一篇中拖放进来的代码是 <cc1:TextEdit ID="TextEdi ...
- MoveWindow() SetWindowPos()的区别与联系
敲代码时,突然发现有一个背景图片无法显示,百思不得其解,最终发现是MoveWindow() SetWindowPos()这两个函数的使用不当造成的. 这里把这两个函数的前世今生给分析一下. 先看Mov ...
- PAT——乙级1018
题目是 1018 锤子剪刀布 (20 point(s)) 大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示: 现给出两人的交锋记录,请统计双方的胜.平.负次数,并且给出双方分别出 ...
- 实用拜占庭容错算法PBFT
实用拜占庭容错算法PBFT 实用拜占庭容错算法PBFT 96 乔延宏 2017.06.19 22:58* 字数 1699 阅读 4972评论 0喜欢 11 分布式架构遭遇的问题 分布式架构会遭遇到以下 ...
- table中填写数据并批量增加
<table class = "table jtable table-bordered table-striped hide" id = "table_1" ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [HAOI2018][bzoj5306] 染色 [容斥原理+NTT]
题面 传送门 思路 这道题的核心在于"恰好有$k$种颜色占了恰好$s$个格子" 这些"恰好",引导我们去思考,怎么求出总的方案数呢? 分开考虑 考虑把恰好有$s ...
- [luoguP2596] [ZJOI2006]书架(splay)
传送门 题目中的几个操作,直接splay搞一下即可: 把s旋转到根,左子树接到右子树 把s旋转到根,右子树接到左子树 交换s相邻的信息即可 把s旋转到根,左子树的大小即为答案 找第k大 没了 #inc ...
- javasript 按值传递
现象总结如下: 1.JS的基本类型,是按值传递的.2.对于对象而言:分两种情况(a).如果传递给函数的参数是对象,并且修改了这个对象的属性(某些字段的值),那么奇妙的问题就来了.原参数就被修改了.(b ...