BZOJ_1304_[CQOI2009]叶子的染色_树形DP

Description

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

Input

第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。

Output

仅一个数,即着色结点数的最小值。

Sample Input

5 3
0
1
0
1 4
2 5
4 5
3 5

Sample Output

2

HINT

M<=10000

N<=5021


考虑根节点可以扭成相邻的一个节点,交换一下两个节点的颜色,在最优解的情况下答案是不会变的。

因此根可以任取一个非叶子节点。

然后考虑一个点的子树可能有一些还没被祖先盖上,这些点的颜色一定是一样的。

于是设f[i]表示子树全部合法的最小代价,g[i]表示剩下一些白的,h[i]表示剩下一些黑的。

转移推一下吧,感觉还算可以。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 10050
int head[N],to[N<<1],nxt[N<<1],cnt,n,m,c[N],f[N],g[N],h[N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void dfs(int x,int y) {
int i;
if(x<=n) {
f[x]=1; if(!c[x]) g[x]=0; else h[x]=0; return ;
}
int h1=0,h2=0,h3=0;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs(to[i],x);
h1+=f[to[i]]; h2+=min(f[to[i]],g[to[i]]); h3+=min(f[to[i]],h[to[i]]);
}
}
f[x]=min(min(h1,h2+1),h3+1);
g[x]=h2; h[x]=h3;
}
int main() {
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
memset(h,0x3f,sizeof(h));
scanf("%d%d",&m,&n);
int i,x,y;
for(i=1;i<=n;i++) scanf("%d",&c[i]);
for(i=1;i<m;i++) scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs(n+1,0);
printf("%d\n",f[n+1]);
}

BZOJ_1304_[CQOI2009]叶子的染色_树形DP的更多相关文章

  1. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  2. [luogu3155 CQOI2009] 叶子的染色(树形dp)

    传送门 Solution 十分简单的树形dpQwQ,转移关系:父亲染了儿子不用染 只需要确定根就是简单树形dp,而其实根可以随便取一个非叶子节点 可以分情况讨论发现答案并不会改变 Code //By ...

  3. BZOJ1304 CQOI2009叶子的染色(树形dp)

    令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...

  4. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

  5. 【Luogu】P3155叶子的染色(树形DP)

    题目链接 树形DP水题qwq. 设f[i][j]是以i为根的子树,染成j色,且满足内部需求的最少染色节点数. 设to是x的子节点,那么状态转移方程如此设计: 1.f[i][0] 这个状态表示i不染色, ...

  6. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  7. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  8. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  9. P3155 [CQOI2009]叶子的染色

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

随机推荐

  1. 基于togglepoolmember.pl编写F5设备控制模块

    为了方便利用python对F5设备进行操作,本文将togglepoolmember.pl对F5设备的控制写成了python模块,源代码例如以下: #!/usr/bin/python # -*- cod ...

  2. 认识 service worker

    离线缓存可以提升用户体验,可以节省网络资源,但是,浏览器对资源缓存和自定义网络请求的控制一直不够完善,service worker 的出现就是为了解决这些问题 它可以解决目前离线应用的问题,同时也可以 ...

  3. 用HttpClient模拟HTTP的GET和POST请求(转)

    本文转自:http://blog.csdn.net/xiazdong/article/details/7724349 一.HttpClient介绍   HttpClient是用来模拟HTTP请求的,其 ...

  4. share初始化

    要看懂share先看与map的交互以及跨地图的交互 share初始化 void Share::ShareInit(I_DataLayer* data_layer) { // 加载xls表 if(!Lo ...

  5. ptyhon ORM mongoengine

    参考资料:http://www.tuicool.com/articles/bMvI7vN from mongoengine import * from datetime import datetime ...

  6. 九度OJ 1039:Zero-complexity Transposition(逆置) (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3093 解决:1255 题目描述: You are given a sequence of integer numbers. Zero-co ...

  7. django使用自己的setting的方法

    创建一个自己的setting xxx.setting export DJANGO_SETTINGS_MODULE="xxx.setting" 然后在项目中import原生的sett ...

  8. github Merge method

    About merge methods on GitHub - User Documentation https://help.github.com/articles/about-merge-meth ...

  9. php xmlrpc使用示例

    xmlrpc 远程过程调用, 使用xml文本方式传输数据. soap协议比xmlrpc复杂并强大. 1.修改 php.ini,开启 xmlrpc 扩展 2.rpc_client.php <?ph ...

  10. 全能,OnSize的使用,部分覆盖后重画,都没有问题

    import wx class View(wx.Panel): def __init__(self, parent): super(View, self).__init__(parent) self. ...