Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000. The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000. Each of the next Q lines represents an operation. "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000. "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.
 
这是对区间所有点增固定值类的线段树。
 
代码:
#include <iostream>
#include <cstdio>
#define LL long long using namespace std; int n, q; //线段树
const int maxn = 100000;
struct node
{
int lt, rt;
LL val, add;
}tree[4*maxn]; //建立线段树
void Build(int lt, int rt, int id)
{
tree[id].lt = lt;
tree[id].rt = rt;
tree[id].val = 0;//每段的初值,根据题目要求
tree[id].add = 0;
if (lt == rt)
{
scanf("%I64d", &tree[id].val);
//tree[id].add = ??;
return;
}
int mid = (lt + rt) >> 1;
Build(lt, mid, id << 1);
Build(mid + 1, rt, id << 1 | 1);
tree[id].val = tree[id<<1].val + tree[id<<1|1].val;
} void PushDown(int id, int pls)
{
tree[id<<1].add += tree[id].add;
//tree[id<<1].val += (pls-(pls>>1))*tree[id].add;
tree[id<<1].val += (tree[id<<1].rt-tree[id<<1].lt+1)*tree[id].add;
tree[id<<1|1].add += tree[id].add;
//tree[id<<1|1].val += (pls>>1)*tree[id].add;
tree[id<<1|1].val += (tree[id<<1|1].rt-tree[id<<1|1].lt+1)*tree[id].add;
tree[id].add = 0;
} //增加区间内每个点固定的值
void Add(int lt, int rt, int id, int pls)
{
if (lt <= tree[id].lt && rt >= tree[id].rt)
{
tree[id].add += pls;
tree[id].val += pls * (tree[id].rt-tree[id].lt+1);
return;
}
if (tree[id].add != 0)
{
PushDown(id, tree[id].rt-tree[id].lt+1);
}
int mid = (tree[id].lt + tree[id].rt) >> 1;
if (lt <= mid)
Add(lt, rt, id<<1, pls);
if (rt > mid)
Add(lt, rt, id<<1|1, pls);
tree[id].val = tree[id<<1].val + tree[id<<1|1].val;
} LL Query(int lt, int rt, int id)
{
if (lt <= tree[id].lt && rt >= tree[id].rt)
return tree[id].val;
if (tree[id].add != 0)
{
PushDown(id, tree[id].rt-tree[id].lt+1);
}
int mid = (tree[id].lt + tree[id].rt) >> 1;
LL ans = 0;
if (lt <= mid)
ans += Query(lt, rt, id<<1);
if (rt > mid)
ans += Query(lt, rt, id<<1|1);
return ans; } int main()
{
//freopen("in.txt", "r", stdin);
char op;
int a, b, k;
while (scanf("%d%d", &n, &q) != EOF)
{
Build(1, n, 1);
for (int i = 0; i < q; ++i)
{
getchar();
op = getchar();
getchar();
scanf("%d%d", &a, &b);
if (op == 'Q')
printf("%I64d\n", Query(a, b, 1));
else
{
scanf("%d", &k);
Add(a, b, 1, k);
}
}
}
return 0;
}

ACM学习历程——POJ3468 A Simple Problem with Integers(线段树)的更多相关文章

  1. poj3468 A Simple Problem with Integers (线段树区间最大值)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92127   ...

  2. POJ3468 A Simple Problem with Integers(线段树延时标记)

    题目地址http://poj.org/problem?id=3468 题目大意很简单,有两个操作,一个 Q a, b 查询区间[a, b]的和 C a, b, c让区间[a, b] 的每一个数+c 第 ...

  3. POJ3468 A Simple Problem with Integers —— 线段树 区间修改

    题目链接:https://vjudge.net/problem/POJ-3468 You have N integers, A1, A2, ... , AN. You need to deal wit ...

  4. poj3468 A Simple Problem with Integers(线段树模板 功能:区间增减,区间求和)

    转载请注明出处:http://blog.csdn.net/u012860063 Description You have N integers, A1, A2, ... , AN. You need ...

  5. 2018 ACMICPC上海大都会赛重现赛 H - A Simple Problem with Integers (线段树,循环节)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 H - A Simple Problem with Integers (线段树,循环节) 链接:https://ac.nowcoder.co ...

  6. [poj3468]A Simple Problem with Integers_线段树

    A Simple Problem with Integers 题目大意:给出n个数,区间加.查询区间和. 注释:1<=n,q<=100,000.(q为操作次数). 想法:嗯...学了这么长 ...

  7. poj3468 A Simple Problem with Integers (树状数组做法)

    题目传送门 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 1 ...

  8. poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解

    A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...

  9. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

随机推荐

  1. Spring学习十二----------Bean的配置之@ImportResource和@Value

    © 版权声明:本文为博主原创文章,转载请注明出处 @ImportResource -引入XML配置文件 @Value -从配置文件中获取值 实例 1.项目结构 2.pom.xml <projec ...

  2. Druid——阿里巴巴的开源项目(关于数据库连接、监控)

    相关文章 0.Druid首页——jdbc连接池,监控组件 1.阿里巴巴的开源项目Druid(关于数据库连接) 2.ITeye谈Druid 3.DBCP(DataBase connection pool ...

  3. Content encoding error问题解决方法

    A few people have been experiencing the following error. UPDATE: The reason for it happening is beca ...

  4. 九度OJ 1031:xxx定律 (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6058 解决:3816 题目描述:     对于一个数n,如果是偶数,就把n砍掉一半:如果是奇数,把n变成 3*n+ 1后砍掉一半,直到该数 ...

  5. 九度OJ 1028:继续畅通工程 (最小生成树)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3140 解决:1338 题目描述:     省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有 ...

  6. python cookbook第三版学习笔记八:解析码流

    Binascii模块 通过名字很容易知道这个模块的作用,binary, ascii.两个字母的合成,也就是二进制和ascii的转换模块 下面先介绍下字母的ascii码 a-z的ascii是从97-12 ...

  7. 移动App该怎样保存用户password

    版权声明:本文为横云断岭原创文章,未经博主同意不得转载.微信公众号:横云断岭的专栏 https://blog.csdn.net/hengyunabc/article/details/34623957 ...

  8. python调试利器:最直观简洁的错误日志

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-08-30 17:12:27 # @Author : Sheldon (thi ...

  9. 基于欧氏距离和马氏距离的异常点检测—matlab实现

    前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开. 基于欧式距离的: load data1.txt %导入数据,行为样本,列为特征 X=data1; %赋值给X ...

  10. nodejs中的子进程,深入解析child_process模块和cluster模块

    Node.js的进程管理   node遵循的是单线程单进程的模式,node的单线程是指js的引擎只有一个实例,且在nodejs的主线程中执行,同时node以事件驱动的方式处理IO等异步操作.node的 ...