传送门

原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白)

首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$

我们设$f(d)$表示$gcd(i,j)=d$的$(i,j)$的对数,$g(d)$表示存在公因数为$d$的$(i,j)$的对数

那么就有$$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]$$

$$g(d)=\sum_{d|k}f(k)=\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor$$

那么根据莫比乌斯反演定理,则有$$f(n)=\sum_{n\mid d}\mu(\frac{d}{n})g(d)$$

然后就可以化简了$$ans=\sum_{p\in prim}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=p]$$

将$f(p)$代入,得$$ans=\sum_{p\in prim}f(p)$$

$$ans=\sum_{p\in prim}\sum_{p\mid d}\mu(\frac{d}{p})g(d)$$

我们考虑换一个枚举项,不枚举$p$,枚举$\frac{d}{p}$

$$ans=\sum_{p\in prim}\sum_{d=1}^{min(\lfloor\frac{n}{p}\rfloor,\lfloor\frac{m}{p}\rfloor)}\mu(d)g(dp)\\=\sum_{p\in prim}\sum_{d=1}^{min(\lfloor\frac{n}{p}\rfloor,\lfloor\frac{m}{p}\rfloor)}\mu(d)\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor$$

然后我们把$dp$给换成$T$

$$ans=\sum_{T=1}^{min(n,m)}\sum_{t|T,t\in prim}\mu(\lfloor\frac{T}{t}\rfloor)\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor$$

$$ans=\sum_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor(\sum_{t|T,t\in prim}\mu(\lfloor\frac{T}{t}\rfloor))$$

然后对$(\sum_{t\mid T,t\in prim}\mu(\frac{T}{t}))$求一个前缀和,就好了

这数学公式真的是打的我心力憔悴……

 //minamoto
#include<cstdio>
#define ll long long
//#define min(a,b) ((a)<(b)?(a):(b))
inline int min(int a,int b){return a<b?a:b;}
const int N=1e7+;
int vis[N],mu[N],p[N],g[N],m;ll sum[N],ans;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) p[++m]=i,mu[i]=-;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int j=;j<=m;++j)
for(int i=;i*p[j]<=n;++i)
g[i*p[j]]+=mu[i];
for(int i=;i<=n;++i)
sum[i]=sum[i-]+g[i];
}
int main(){
// freopen("testdata.in","r",stdin);
init(1e7);
int T;scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d",&n,&m);
if(n>m) n^=m^=n^=m;
ans=;
for(int l=,r;l<=n;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-]);
}
printf("%lld\n",ans);
}
return ;
}

洛谷P2257 YY的GCD(莫比乌斯反演)的更多相关文章

  1. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  2. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  3. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  4. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  5. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  6. 洛谷P2257 YY的GCD

    今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...

  7. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  8. P2257 YY的GCD (莫比乌斯反演)

    题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...

  9. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

随机推荐

  1. 【shell】获取第10+个位置参数

    转载自:http://www.cnblogs.com/sheldonxu/archive/2012/06/25/2560770.html 在Shell脚本中,可以用$n的方式获取第n个参数,例如,一个 ...

  2. save create

    其中 create 和 create!就等於 new 完就 save 和 save!,有無驚嘆號的差別 在於 validate 資料驗證不正確的動作,無驚嘆號版本會回傳布林值(true 或 false ...

  3. ES6 Class基本用法

    JavaScript 语言中,生成实例对象的传统方法是通过构造函数.下面是一个例子. function Point(x, y) { this.x = x; this.y = y; } Point.pr ...

  4. CSS3实现3D木块旋转动画

    CSS3实现3D木块旋转动画,css3特效,旋转动画,3D,立体效果,CSS3实现3D木块旋转动画是一款迷人的HTML5+CSS3实现的3D旋转动画. 代码下载:http://www.huiyi8.c ...

  5. HDU 2157 How many ways??:矩阵快速幂【i到j共经过k个节点的方法数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157 题解: 给你一个有向图,n个节点m条边,问你从i到j共经过k个节点的方法数(不算i点). 题解: ...

  6. [原创]Java动态生成word文档(图文并茂)

    很多情况下,软件开发者需要从数据库读取数据,然后将数据动态填充到手工预先准备好的Word模板文档里,这对于大批量生成拥有相同格式排版的正式文件非常有用,这个功能应用PageOffice的基本动态填充功 ...

  7. C#多线程学习 之 线程池[ThreadPool]

    在多线程的程序中,经常会出现两种情况: 一种情况:   应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应                   这一般使用ThreadPo ...

  8. spring2.5和struts1.3.8整合

    第一步:导入对应jar文件 第二步: 1.在web容器中实例化spring容器 <!-- 指定spring的配置文件,默认从web根目录寻找配置文件,我们可以通过spring提供的classpa ...

  9. @Autowired的作用,自动装配,省去写get/set方法

    这个注解就是spring可以自动帮你把bean里面引用的对象的setter/getter方法省略,它会自动帮你set/get. <bean id="userDao" clas ...

  10. Python 2.7数据类型操作_20161010

    为兼容python3.x版本 print 后都加了括号 python 数据类型 参考廖雪峰大神python2.7教程 http://www.liaoxuefeng.com/wiki/001374738 ...