洛谷P2257 YY的GCD(莫比乌斯反演)
原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白)
首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$
我们设$f(d)$表示$gcd(i,j)=d$的$(i,j)$的对数,$g(d)$表示存在公因数为$d$的$(i,j)$的对数
那么就有$$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]$$
$$g(d)=\sum_{d|k}f(k)=\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor$$
那么根据莫比乌斯反演定理,则有$$f(n)=\sum_{n\mid d}\mu(\frac{d}{n})g(d)$$
然后就可以化简了$$ans=\sum_{p\in prim}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=p]$$
将$f(p)$代入,得$$ans=\sum_{p\in prim}f(p)$$
$$ans=\sum_{p\in prim}\sum_{p\mid d}\mu(\frac{d}{p})g(d)$$
我们考虑换一个枚举项,不枚举$p$,枚举$\frac{d}{p}$
$$ans=\sum_{p\in prim}\sum_{d=1}^{min(\lfloor\frac{n}{p}\rfloor,\lfloor\frac{m}{p}\rfloor)}\mu(d)g(dp)\\=\sum_{p\in prim}\sum_{d=1}^{min(\lfloor\frac{n}{p}\rfloor,\lfloor\frac{m}{p}\rfloor)}\mu(d)\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor$$
然后我们把$dp$给换成$T$
$$ans=\sum_{T=1}^{min(n,m)}\sum_{t|T,t\in prim}\mu(\lfloor\frac{T}{t}\rfloor)\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor$$
$$ans=\sum_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor(\sum_{t|T,t\in prim}\mu(\lfloor\frac{T}{t}\rfloor))$$
然后对$(\sum_{t\mid T,t\in prim}\mu(\frac{T}{t}))$求一个前缀和,就好了
这数学公式真的是打的我心力憔悴……
//minamoto
#include<cstdio>
#define ll long long
//#define min(a,b) ((a)<(b)?(a):(b))
inline int min(int a,int b){return a<b?a:b;}
const int N=1e7+;
int vis[N],mu[N],p[N],g[N],m;ll sum[N],ans;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) p[++m]=i,mu[i]=-;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int j=;j<=m;++j)
for(int i=;i*p[j]<=n;++i)
g[i*p[j]]+=mu[i];
for(int i=;i<=n;++i)
sum[i]=sum[i-]+g[i];
}
int main(){
// freopen("testdata.in","r",stdin);
init(1e7);
int T;scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d",&n,&m);
if(n>m) n^=m^=n^=m;
ans=;
for(int l=,r;l<=n;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-]);
}
printf("%lld\n",ans);
}
return ;
}
洛谷P2257 YY的GCD(莫比乌斯反演)的更多相关文章
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷P2257 YY的GCD
今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- P2257 YY的GCD (莫比乌斯反演)
题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
随机推荐
- re.sub用法
re.sub功能是对于一个输入的字符串,利用正则表达式,来实现字符串替换处理的功能返回处理后的字符串 re.sub共有五个参数 三个必选参数pattern,repl,string 两个可选参数coun ...
- Linux线程的几种结束方式
Linux创建线程使用 int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) ...
- ManualResetEvent使用
1.定义 MSDN定义: 通知一个或多个正在等待的线程已发生事件.此类不能被继承. 详细说明: ManualResetEvent 允许线程通过发信号互相通信.通常,此通信涉及一个线程在其他线程进行之前 ...
- laravel基础课程---12、lavarel的ajax操作2(lavarel的ajax使用总结)
laravel基础课程---12.lavarel的ajax操作2(lavarel的ajax使用总结) 一.总结 一句话总结: 比较简单:就是js请求ajax,然后控制器获取请求参数,返回数据即可 1. ...
- ES 搜索结果expalain 可以类似数据库性能调优来看排序算法的选择
When we run a simple term query with explain set to true (see Understanding the Score), you will see ...
- codeforces 658B B. Bear and Displayed Friends(优先队列)
题目链接: B. Bear and Displayed Friends time limit per test 2 seconds memory limit per test 256 megabyte ...
- 如何理解 Spring 注入
先看一段代码 假设你编写了两个类,一个是人(Person),一个是手机(Mobile). 人有时候需要用手机打电话,需要用到手机的dialUp方法. 传统的写法是这样: Java code publi ...
- 「LuoguP3389」【模板】高斯消元法
题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 nn 第二至 n+1n+1行,每行 n+1n+1 个整数,为a_1, a_2 \cdot ...
- 【Lintcode】033.N-Queens
题目: The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two que ...
- 【Lintcode】105.Copy List with Random Pointer
题目: A linked list is given such that each node contains an additional random pointer which could poi ...