Three Equal

Time limit: 1000 ms
Memory limit: 256 MB

 

You are given an array AA of NN integers between 00 and 22. With cost 11 you can apply the following operation A_i = ((A_i + 1)\ \% \ 3)A​i​​=((A​i​​+1) % 3).

Find the minimum cost to make all elements equal.

Standard input

The first line contains one integer NN.

The second line contains NN integers representing the elements of the array AA.

Standard output

Output a single number representing the minimum cost to make all elements of AA equal.

Constraints and notes

  • 1 \leq N \leq 10^31≤N≤10​3​​
  • The elements of the array AA are integers between 00 and 22.
Input Output
4
1 0 0 2
3
3
1 2 2
1
3
1 1 1
0

问你n个数到一个相同模数的最小值,那就直接枚举这三个模数好了,当时手残还打错一个字母

#include <bits/stdc++.h>
using namespace std;
int b[];
int main()
{
int n;
cin>>n;
for(int i=,x;i<n;i++)
{
if(x%==)b[]+=,b[]+=;
else if(x%==)b[]+=,b[]+=;
else b[]+=,b[]+=;
}
cout<<min(min(b[],b[]),b[]);
return ;
}

Ricocheting Balls

Time limit: 1000 ms
Memory limit: 256 MB

 

There are NN falling balls situated at some height levels; more specifically the i^{\text{th}}i​th​​ ball is H_iH​i​​ meters above the ground. The balls are supposed to be falling at 11 meter per second, but they're not; they're stuck in time, hovering.

You can repeat the following process as many times as you want (possibly 00 times): you will unfreeze the time for 11 second and then freeze it back up.

If a ball hits the ground, which is situated at the height level 00, it will ricohet and start ascending instead; therefore, the next time it is unfrozen, it will actually go upwards to the height level 11, then 22, 33, 44 and so on...

You want to find the moment of time that minimizes the sum of heights of all the balls. Print the value of the sum obtained at this moment of time.

Standard input

The first line contains an integer NN.

The next line contains NN integers, representing HH.

Standard output

Print an integer, the minimum sum of heights of all balls that can be obtained by the above-described process.

Constraints and notes

  • 1 \leq N \leq 10^51≤N≤10​5​​
  • 1 \leq H_i \leq 10^91≤H​i​​≤10​9​​
Input Output Explanation
4
1 4 5 2
6

Moment of time 00: [1, 4, 5, 2][1,4,5,2], summing to 1212.

Moment of time 11: [0, 3, 4, 1][0,3,4,1], summing to 88.

Moment of time 22: [1, 2, 3, 0][1,2,3,0], summing to 66. We can notice how the first ball starts ascending, after it hit the ground.

Moment of time 33: [2, 1, 2, 1][2,1,2,1], summing to 66.

9
1 7 1 1 1 5 3 6 3
17

小球每1s落下1m,问你这个距离地面距离的最小和,当然是选择中位数了

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+;
int h[N];
int main()
{
int n;
cin>>n;
long long ans=;
for(int i=; i<n; i++)cin>>h[i];
sort(h,h+n);
for(int i=; i<n; i++)
ans+=abs(h[i]-h[(n-)/]);
cout<<ans<<endl;
return ;
}

Binary Isomorphism

Time limit: 1000 ms
Memory limit: 256 MB

 

You are given two binary trees. These two trees are called isomorphic if one of them can be obtained from other by a series of flips, i.e. by swapping the children of some nodes. Two leaves are isomorphic.

Both these trees will be given through their parents array. In a parents array,

  • nodes are 11-based
  • there is only one position rr where P_r = 0P​r​​=0. This means that rr is the root of the tree.
  • for every node i \neq ri≠r, its direct parent is P_iP​i​​.

Standard input

The first line contains TT, the number of test cases.

For every test:

  • the first line contains NN, representing the number of nodes in both of the trees
  • the second line contains NN integers, representing the parents array of the first tree
  • the third line contains NN integers, representing the parents array of the second tree

Standard output

For every test case, print a line containing 1 if the two trees are isomorphic, or 0 otherwise.

Constraints and notes

  • 1 \leq T \leq 201≤T≤20
  • 1 \leq N \leq 10^51≤N≤10​5​​. The sum of all values of NN in a test is \leq 10^5≤10​5​​
Input Output Explanation
3
4
3 0 2 3
3 4 0 3
5
5 1 0 3 4
5 1 4 2 0
5
0 1 2 1 4
0 1 4 1 2
0
1
1

13243142

1523442351

1234512543

给你两个二叉树,看其是否同构

需要dfs看其每个节点孩子数是否相同

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+;
vector<int>v[N];
vector<int>v2[N];
int dfs(int x,int y)
{
if(v[x].size()!=v2[y].size())return ;
if(v[x].size()==)return ;
if(v[x].size()==)return dfs(v[x][],v2[y][]);
else
{
if(dfs(v[x][],v2[y][])&&dfs(v[x][],v2[y][])||dfs(v[x][],v2[y][])&&dfs(v[x][],v2[y][]))
return ;
return ;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,rt1,rt2;
scanf("%d",&n);
for(int i=; i<=n; i++)
v[i].clear(),v2[i].clear();
for(int i=; i<=n; i++)
{
int x;
scanf("%d",&x);
if(x==)
rt1=i;
else v[x].push_back(i);
}
for(int i=; i<=n; i++)
{
int x;
scanf("%d",&x);
if(x==)
rt2=i;
else v2[x].push_back(i);
}
printf("%d\n",dfs(rt1,rt2));
}
return ;
}

还可以去括号匹配的思想

#include <bits/stdc++.h>
#define mod 1000000007
#define p 666013
using namespace std; int put[];
vector <int> adia[]; pair <int, int> dfs(int nod) {
vector <pair <int, int>> fii;
for (auto i : adia[nod]) {
fii.push_back(dfs(i));
} sort(fii.begin(), fii.end());
int lact();
int ans = '(';
for (auto i : fii) {
ans += 1ll * i.first * put[lact] % mod;
lact += i.second;
}
ans += 1ll * ')' * lact;
lact++;
return { ans, lact };
} void solve()
{
int n;
cin >> n;
vector <pair <int, int>> v; for (int q(); q < ; q++) {
for (int i(); i <= n; i++)
adia[i] = vector <int> (); int root;
for (int i(); i <= n; i++) {
int tata;
cin >> tata;
if (tata == )
root = i;
else
adia[tata].push_back(i);
}
auto x = dfs(root);
v.push_back(x);
} cout << (v[] == v[]) << '\n';
} int main() {
put[] = ; for (int i(); i < ; i++)
put[i] = 1ll * * put[i - ] % mod;
int t;
cin >> t; while (t--)
solve();
return ;
}

Russian Dolls Ways

Time limit: 1000 ms
Memory limit: 256 MB

 

You have NN Russian dolls, for the i^{th}i​th​​ doll you know its size A_iA​i​​.

A doll of size jj can be put inside a doll of size ii if j < ij<i. In addition, a doll of size ii can nest only onesmaller doll jj. But that doll jj, can nest another smaller doll, in a recursive manner.

For example, if you have three dolls of sizes 33, 1010 and 77, you can put the first doll inside the third, and then the third inside the second.

Your goal is to count the number of nestings that minimizes the number of dolls at the end.

Consider the array PP of size NN where P_iP​i​​ is index of the doll in which the doll ii is nested into. If doll iiis not nested into any other doll, P_i = 0P​i​​=0. Two ways are considered distinct if there is a 1 \leq i \leq N1≤i≤Nsuch that P1_i \neq P2_iP1​i​​≠P2​i​​.

Standard input

The first line contains a single integer NN.

The second line contains NN integers representing the elements of AA, the sizes of the dolls.

Standard output

Output a single number representing the number of ways to nest the dolls in order to achieve the minimum number of dolls at the end, modulo 10^9+710​9​​+7.

Constraints and notes

  • 1 \leq N \leq 10^51≤N≤10​5​​
  • 1 \leq A_i \leq 10^91≤A​i​​≤10​9​​
Input Output Explanation
3
1 2 3
1

The minimum number of dolls at the end is 11

4
1 2 2 3
4

The minimum number of dolls at the end is 22.

The PP array from the input is

[2, 4, 0, 0][2,4,0,0]

[2, 0, 4, 0][2,0,4,0]

[3, 4, 0, 0][3,4,0,0]

[3, 0, 4, 0][3,0,4,0]

6
1 1 2 2 3 3
4

The minimum number of dolls at the end is 22.

The PP array from the input is

[3, 4, 5, 6, 0, 0][3,4,5,6,0,0]

[4, 3, 5, 6, 0, 0][4,3,5,6,0,0]

[3, 4, 6, 5, 0, 0][3,4,6,5,0,0]

[4, 3, 6, 5, 0, 0][4,3,6,5,0,0]

俄罗斯套娃,就是让你求一下这个长度为n的序列最多能分成几个序列,其实就是重复个数最多的那个个数k

然后就是每个值都要选一个大小为k的盒子

#include<bits/stdc++.h>
using namespace std;
const int MD=1e9+;
long long ans=;
unordered_map<int,int> M;
vector<int>V;
int main() {
ios_base::sync_with_stdio(),cin.tie(),cout.tie();
int n;
cin>>n;
for(int i=,x;i<n;i++)cin>>x,M[x]++;
for(auto X:M)V.push_back(X.second);
sort(V.begin(),V.end());
int k=*V.rbegin();
V.pop_back();
for(auto X:V)
for(int i=;i<X;i++)ans=ans*(k-i)%MD;
cout<<ans;
}

Strange Substring

Time limit: 2000 ms
Memory limit: 256 MB

 

You are given two strings AA and BB, consisting only of lowercase letters from the English alphabet. Count the number of distinct strings SS, which are substrings of AA, but not substrings of BB.

Standard input

The first line contains AA.

The second line contains BB.

Standard output

Print the answer on the first line.

Constraints and notes

  • 1 \leq |A|, |B| \leq 10^51≤∣A∣,∣B∣≤10​5​​
Input Output
abcab
bcab
3
aaa
aa
1
acabad
abcacd
12

题意很好理解,就是让你找是A的子串,但是不是B的子串的个数

benq的SA+LCP

#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm> using namespace std; struct suffix_array {
suffix_array(const char* S) : N(strlen(S)) {
vector<int> V;
for(int i = ; i < N; i++) V.push_back(S[i]);
init(V);
} suffix_array(const vector<int>& VV) : N(VV.size()) {
vector<int> V(VV);
init(V);
} int N;
vector<int> SA;
vector<int> RA; void compress(vector<int>& V, vector<int>& C) {
copy(V.begin(), V.end(), C.begin());
sort(C.begin(), C.end());
auto cend = unique(C.begin(), C.end());
for(int i = ; i < N; i++) {
V[i] = lower_bound(C.begin(), cend, V[i]) - C.begin() + ;
}
V.push_back(); C.push_back();
} void compute_sa(vector<int>& V, vector<int>& C) {
vector<int> T(N + );
for(int i = ; i <= N; i++) SA.push_back(i);
for(int ski = ; V[SA[N]] < N; ski = ski ? ski << : ) {
fill(C.begin(), C.end(), );
for(int i = ; i < ski; i++) T[i] = N - i;
for(int i = , p = ski; i <= N; i++) if(SA[i] >= ski) T[p++] = SA[i] - ski;
for(int i = ; i <= N; i++) C[V[i]]++;
for(int i = ; i <= N; i++) C[i] += C[i - ];
for(int i = N; i >= ; i--) SA[--C[V[T[i]]]] = T[i]; T[SA[]] = ;
for(int j = ; j <= N; j++) {
int a = SA[j];
int b = SA[j - ];
T[a] = T[b] + (a + ski >= N || b + ski >= N ||
V[a] != V[b] || V[a + ski] != V[b + ski]);
}
V.swap(T);
}
} void compute_lcp(const vector<int>& OV) {
LCP = vector<int>(N);
int len = ;
for(int i = ; i < N; i++, len = max(, len - )) {
int si = RA[i];
int j = SA[si - ];
for(; i + len < N && j + len < N && OV[i + len] == OV[j + len]; len++);
LCP[si - ] = len;
}
} void init(vector<int>& V) {
vector<int> OV(V);
vector<int> C(N);
compress(V, C);
compute_sa(V, C);
RA.resize(N + );
for(int i = ; i <= N; i++) RA[SA[i]] = i;
compute_lcp(OV);
} vector<int> LCP;
}; int main() {
ios_base::sync_with_stdio(false); string S;
vector<pair<int, int> > A; int N = ;
for (int i = ; i < N; i++) {
string T; cin >> T; S += T;
S += "?";
for (int j = ; j < T.size(); j++) {
A.push_back(make_pair(i, T.size() - j));
}
A.push_back(make_pair(-, -));
}
A.push_back(make_pair(-, -)); vector<long long> result(N);
suffix_array sa(S.c_str());
sa.LCP.push_back();
for (int i = ; i <= sa.N; ) {
int j = sa.SA[i];
int ind = A[j].first;
if (ind == -) {
++i;
continue;
}
int sz = ;
while (i + sz <= sa.N && A[sa.SA[i + sz]].first == ind) {
++sz;
} int ln = sa.LCP[i - ];
for (int j = i; j < i + sz; j++) {
result[ind] += max(A[sa.SA[j]].second - max(ln, sa.LCP[j]), );
ln = min(ln, sa.LCP[j]);
}
i += sz;
}
cout << result[]; return ;
}

一种我倾向于的写法

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#define N 2000000
using namespace std;
struct node{
int son[];
int len,fail;
bool sig;
}tri[N];
char S[N];
int len,L,lst;
int in[N],d[N];
void add(int last,int c,bool sig){
static int v,u,up,up1;
v=++L;
u=last;
tri[v].len=tri[u].len+;
for (;u&&!tri[u].son[c];u=tri[u].fail)tri[u].son[c]=v;
if (!u)tri[v].fail=;
else{
up=tri[u].son[c];
if (tri[up].len==tri[u].len+)tri[v].fail=up;
else{
up1=++L;
tri[up1]=tri[up];
tri[up1].len=tri[u].len+;
tri[up].fail=tri[v].fail=up1;
for (;u&&tri[u].son[c]==up;u=tri[u].fail)tri[u].son[c]=up1;
}
}
tri[v].sig=sig;
lst=v;
}
int main(){
scanf(" %s",S+);
len=strlen(S+);
lst=,L=;
for (int i=;i<=len;i++)add(lst,S[i]-'a',);
scanf(" %s",S+);
len=strlen(S+);
add(lst,,);
for (int i=;i<=len;i++)add(lst,S[i]-'a',);
for (int i=;i<=L;i++)in[tri[i].fail]++;
int l=,r=;
for (int i=;i<=L;i++)
if (!in[i])d[++r]=i;
while (l!=r){
++l;
tri[tri[d[l]].fail].sig|=tri[d[l]].sig;
if (!(--in[tri[d[l]].fail]))
d[++r]=tri[d[l]].fail;
}
long long ans=;
for (int i=;i<=L;i++)
if (!tri[i].sig)
ans+=tri[i].len-tri[tri[i].fail].len;
printf("%lld\n",ans);
return ;
}

csa Round #73 (Div. 2 only)的更多相关文章

  1. hdu5634 BestCoder Round #73 (div.1)

    Rikka with Phi  Accepts: 5  Submissions: 66  Time Limit: 16000/8000 MS (Java/Others)  Memory Limit: ...

  2. hdu5631 BestCoder Round #73 (div.2)

    Rikka with Graph  Accepts: 123  Submissions: 525  Time Limit: 2000/1000 MS (Java/Others)  Memory Lim ...

  3. hdu5630 BestCoder Round #73 (div.2)

    Rikka with Chess  Accepts: 393  Submissions: 548  Time Limit: 2000/1000 MS (Java/Others)  Memory Lim ...

  4. Codeforces Beta Round #73 (Div. 2 Only)

    Codeforces Beta Round #73 (Div. 2 Only) http://codeforces.com/contest/88 A 模拟 #include<bits/stdc+ ...

  5. BestCoder Round #73 (div.2)

    1001 Rikka with Chess ans = n / 2 + m / 2 1002 Rikka with Graph 题意:n + 1条边,问减去至少一条使剩下的图连通的方案数. 分析:原来 ...

  6. BestCoder Round #73 (div.2)(hdu 5630)

    Rikka with Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  7. csa Round #66 (Div. 2 only)

    csa66 Risk Rolls Time limit: 1000 msMemory limit: 256 MB   Alena and Boris are playing Risk today. W ...

  8. CSA Round #53 (Div. 2 only) Histogram Partition(模拟)

    传送门 题意 给出一个数组A,你有一个数组B(一开始全为0),询问多少次操作后B转化为A 一次操作:选择一段区间,加上某个正整数 分析 构建一个栈, 输入一个数,若当前栈空或栈顶元素比输入小,则加入栈 ...

  9. CSA Round #50 (Div. 2 only) Min Swaps(模拟)

    传送门 题意 给出一个排列,定义\(value为\sum_{i=1}^{n-1}abs(f[i+1]-f[i])\) \(swap(a[i],a[j])(i≠j)为一次交换\),询问最少的交换次数使得 ...

随机推荐

  1. 关于纠正《Hive权威指南》中的结论~“hive在使用set自定义变量时,hivevar命名空间是可选的”~的论证

    背景: 根据<Hive权威指南>上讲,在hive-0.8.0以后可以使用--define key=value命令定义用户自定义的变量以便在Hive脚本中引用.当用户使用这个功能时,Hive ...

  2. Linux之bash shell的学习

    1.什么是bash  shell bash 是Bourne Again Shell的简称,是从unix系统中的sh发展而来,是用户和偶Linux内核交互的工具,用户通过bash操作内核完成系统的使用和 ...

  3. 为了少点击几次,自己写了一个Chrome插件

    缘由 chrome应用商店有三款二维码插件,自己一直使用的第一款.这三款插件有且只有一个功能就是生成当前页面的URL的二维码. 其实这个功能基本上满足了需要移动端开发在微信里打开页面进行调试的情况. ...

  4. vue2使用animate css

    先上几个链接 vue插件大集合:awesome-vue vue2插件: vue2-animate:vue2-animate vue2插件vue2-animateDEMO: vue2-animatede ...

  5. Controller接收处理json、xml格式数据

    1.RequestBody接收json格式的数据,并直接转为对象. User.java使用lombok依赖包 @Data @AllArgsConstructor @NoArgsConstructor ...

  6. python 基础之for循环有限循环

    #  range(3) 表示 >>> range(3) [0, 1, 2] for循环 for i in range(3): print(i) 测试 0 1 2 打印1~100的奇数 ...

  7. 【0624作业】使用Scanner类输入并显示会员卡号

    package com.work0624; /** * 练习题 * 使用Scanner类输入并显示会员卡号 * @author L */ import java.util.Scanner; publi ...

  8. Windows平台下MySQL常用操作与命令

    Windows平台下MySQL常用操作与命令 Windows平台下MySQL常用操作与命令,学习mysql的朋友可以参考下. 1.导出整个数据库 mysqldump -u 用户名 -p --defau ...

  9. Oracle11g 数据库的导入导出

    导出: 全部: exp imagesys/imagesys@orcl file=/icms/20170116.dmp full=y 用户: exp imagesys/imagesys @orcl fi ...

  10. 采用maven 对tomcat 进行自动部署

    在工作过程中经常会遇到项目频繁发不到额过程,而且在这个过程中会一直进行一些简单但是繁琐的重复性工程 1.打war 包 2.停掉tomcat 3.copy war 包 4.启动tomcat 听说mave ...