Max Sum

Time Limit: 1000ms
Memory Limit: 32768KB
 
This problem will be judged on HDU. Original ID: 1003
64-bit integer IO format: %I64d      Java class name: Main
 
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

 

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

 

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 

Sample Output

Case 1:
14 1 4 Case 2:
7 1 6 解题:dp入门题!弱菜的成长之路啊!
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <climits>
#include <algorithm>
#include <cmath>
#define LL long long
using namespace std;
int dp[],num[];
int main(){
int kase,i,index,ans,n,k = ;
scanf("%d",&kase);
while(kase--){
scanf("%d",&n);
for(i = ; i <= n; i++)
scanf("%d",dp+i);
num[] = ;
ans = dp[index = ];
for(i = ; i <= n; i++){
if(dp[i] <= dp[i-]+dp[i]){
dp[i] = dp[i-]+dp[i];
num[i] = num[i-]+;
}else num[i] = ;
if(ans < dp[i]) ans = dp[index = i];
}
printf("Case %d:\n",k++);
printf("%d %d %d\n",ans,index-num[index],index);
if(kase) putchar('\n');
}
return ;
}

BNUOJ 5227 Max Sum的更多相关文章

  1. [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  2. 2016huasacm暑假集训训练五 J - Max Sum

    题目链接:http://acm.hust.edu.cn/vjudge/contest/126708#problem/J 题意:求一段子的连续最大和,只要每个数都大于0 那么就会一直增加,所以只要和0 ...

  3. Max Sum

    Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub ...

  4. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  5. hdu 1024 Max Sum Plus Plus

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  7. Max Sum Plus Plus——A

    A. Max Sum Plus Plus Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To ...

  8. hdu 1003 Max sum(简单DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem ...

  9. HDU 1003 Max Sum

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. ubuntu 下 docker安装

    1移除以前安装docker sudo apt-get remove docker docker-engine docker-ce docker.io 2 安装包以允许apt通过HTTPS使用存储库 s ...

  2. 12.JAVA-基本数据类型的包装类操作

    1.基本数据类型的包装类 java是一个面向对象编程语言,也就是说一切操作都要用对象的形式进行.但是有个矛盾: 基本数据类型(char,int,double等)不具备对象特性(不携带属性和方法) 这样 ...

  3. CF1081E Missing Numbers

    思路: 贪心乱搞. 实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; const ll m = ...

  4. node.js之Windows 系统下设置Nodejs NPM全局路径

    node.js 0.10 版本下修改全局路径: npm config set cache "D:\nodejs\node_cache" npm config set prefix ...

  5. uvm_reg_model——寄存器模型(一)

    对于一个复杂设计,寄存器模型要能够模拟任意数量的寄存器域操作.UVM提供标准的基类库,UVM的寄存器模型来自于继承自VMM的RAL(Register Abstract Layer),现在可以先将寄存器 ...

  6. uvm_factory——我们的工厂(二)

    上节我们说到uvm_object_registry #(T),uvm_object_reistry 又继承自uvm_object_wrapper,所以首先,让我们先看看它爹是啥样子的: //----- ...

  7. 博客高亮代码及使用OpenLiveWriter修改之前博客

    简述:  最近查阅前辈资料的时候,看到写的博客很有条理,回头看下自己的乱做麻花,然后来时研究: 他们的代码看起来很漂亮然后我就查资料,在网页版上一直没法出来像他们的格式,后查资料看来的使用客户端工具才 ...

  8. (转)MyBatis框架的学习(二)——MyBatis架构与入门

    http://blog.csdn.net/yerenyuan_pku/article/details/71699515 MyBatis框架的架构 MyBatis框架的架构如下图: 下面作简要概述: S ...

  9. Bellman-Ford与SPFA

    一.Bellman-Ford Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(当然也可以是无向图).与Dijkstra相比的优点是,也适合存在负权的图. 若存在最短路(不含负环时 ...

  10. 通过例子理解 k8s 架构【转】

    为了帮助大家更好地理解 Kubernetes 架构,我们部署一个应用来演示各个组件之间是如何协作的. 执行命令 kubectl run httpd-app --image=httpd --replic ...