loj2028 「SHOI2016」随机序列
定义区间是内部只含有乘号的区间。
对于区间左端点是 \(l \geq 2\) 的情况,左端点前头是加号的情况和前头是减号的情况的个数是相同的。因此这些区间不对答案产生贡献。
所以区间左端点必定是 \(1\)。当 \(r=n\) 时,这个区间产生一次贡献。当 \(r < n\) 时,这个区间产生 \(2 \times 3^{n-r-1}\) 次贡献。
掏出一棵支持区间乘,整体求和的线段树。
#include <iostream>
#include <cassert>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, m, a[100005], mi3[100005], v[100005], uu, vv;
const int mod=1e9+7;
int ksm(int a, int b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
struct SGT{
int sum[400005], tag[400005];
void pushUp(int o, int lson, int rson){
sum[o] = (sum[lson] + sum[rson]) % mod;
}
void build(int o, int l, int r){
tag[o] = 1;
if(l==r) sum[o] = v[l];
else{
int mid=(l+r)>>1;
int lson=o<<1;
int rson=lson|1;
if(l<=mid) build(lson, l, mid);
if(mid<r) build(rson, mid+1, r);
pushUp(o, lson, rson);
}
}
void pushDown(int o, int l, int r, int lson, int rson, int mid){
sum[lson] = (ll)sum[lson] * tag[o] % mod;
sum[rson] = (ll)sum[rson] * tag[o] % mod;
tag[lson] = (ll)tag[lson] * tag[o] % mod;
tag[rson] = (ll)tag[rson] * tag[o] % mod;
tag[o] = 1;
}
void update(int o, int l, int r, int x, int y, int k){
if(l>=x && r<=y){
sum[o] = (ll)sum[o] * k % mod;
tag[o] = (ll)tag[o] * k % mod;
}
else{
int mid=(l+r)>>1;
int lson=o<<1;
int rson=lson|1;
if(tag[o]!=1) pushDown(o, l, r, lson, rson, mid);
if(x<=mid) update(lson, l, mid, x, y, k);
if(mid<y) update(rson, mid+1, r, x, y, k);
pushUp(o, lson, rson);
}
}
}sgt;
int main(){
cin>>n>>m;
mi3[0] = v[n] = 1;
for(int i=1; i<=n; i++){
scanf("%d", &a[i]);
mi3[i] = (ll)mi3[i-1] * 3 % mod;
}
int lia=1;
for(int i=1; i<n; i++){
lia = (ll)lia * a[i] % mod;
v[i] = (ll)lia * 2 * mi3[n-i-1] % mod;
}
lia = (ll)lia * a[n] % mod;
v[n] = lia;
sgt.build(1, 1, n);
while(m--){
scanf("%d %d", &uu, &vv);
sgt.update(1, 1, n, uu, n, ksm(a[uu],mod-2));
a[uu] = vv;
sgt.update(1, 1, n, uu, n, a[uu]);
printf("%d\n", sgt.sum[1]);
}
return 0;
}
loj2028 「SHOI2016」随机序列的更多相关文章
- 【LOJ】#2028. 「SHOI2016」随机序列
题解 我们发现只有从第一个往后数,用乘号联通的块是有贡献的 为什么,因为后面所有表达式 肯定会有 + ,还会有个-,贡献全都被抵消了 所以我们处理出前缀乘积,然后乘上表达式的方案数 答案就是\(\su ...
- 「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...
- 【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡
题解 我一开始写的最小表示法写的插头dp,愉快地TLE成60分 然后我觉得我就去看正解了! 发现是容斥 + 矩阵树定理 矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条 ...
- 「SHOI2016」黑暗前的幻想乡
题目链接 戳我 \(Describe\) \(n−1\)个公司,每个公司能修一些边,求每条边都让不同的公司来修的生成树的方案数 \(Solution\) 这道题很明显容斥.答案就是:所有都选的生成树个 ...
- loj2027 「SHOI2016」黑暗前的幻想乡
矩阵树定理+模意义下整数高斯消元 #include <algorithm> #include <iostream> #include <cstring> #incl ...
- Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡
\(\mathcal{Description}\) link. 有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...
- loj #2024. 「JLOI / SHOI2016」侦查守卫
#2024. 「JLOI / SHOI2016」侦查守卫 题目描述 小 R 和 B 神正在玩一款游戏.这款游戏的地图由 nnn 个点和 n−1n - 1n−1 条无向边组成,每条无向边连接两个点, ...
- loj #2026. 「JLOI / SHOI2016」成绩比较
#2026. 「JLOI / SHOI2016」成绩比较 题目描述 THU 的 G 系中有许许多多的大牛,比如小 R 的室友 B 神.B 神已经厌倦了与其他的同学比较 GPA(Grade Poin ...
- loj #2025. 「JLOI / SHOI2016」方
#2025. 「JLOI / SHOI2016」方 题目描述 上帝说,不要圆,要方,于是便有了这道题. 由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形.上帝把我们派到了一个有 NNN ...
随机推荐
- linux-2.6.22.6/Makefile:416: *** mixed implicit and normal rules: deprecated syntax
今天在按照韦东山大哥的教程流程编译内核的时候出现了这个问题 linux-2.6.22.6/Makefile:416: *** mixed implicit and normal rules: ...
- SQL SERVER 2014 缺少Business Intelligence 解决办法
SQL SERVER 2014安装完所有的数据库工具后,缺少开发工具 Business Intelligence 之解决办法. https://msdn.microsoft.com/en-us/l ...
- C++析构函数造成Debug Assertion Failed的问题
昨天写了两个程序,均出现了析构函数造成Debug Assertion Failed的问题,由于是初学c++怎么想也想不通问题出在哪里.今天早上经人指点终于明白问题所在了.下面贴出代码和问题解析:(以下 ...
- python3操作excel02(对excel的基础操作,进行简单的封装)3
#!/usr/bin/env python# -*- coding:UTF-8 -*- import requestsfrom bs4 import BeautifulSoupfrom bs4 imp ...
- 如何使用ABAP Restful API进行代码的全文搜索
使用这个代码全文搜索的前提条件,是在事务码SFW5里激活业务功能:SRIS_SOURCE_SEARCH 只需要把这个url贴到浏览器里: https://:44355/sap/bc/adt/repos ...
- rhythmbox插件开发笔记3:安装 makefile && schema && po
本篇主要讲通过makefile方式来安装rhythmbox插件的相关知识. makefile 如果makefile是什么,请自行谷歌 参考了pandasunny同学的rhythmbox-baidu-m ...
- Uva 10635 Prince and Princess (LCS变形LIS)
直接LCS是时间复杂度是O(p*q)的,但是序列元素各不相同,只要把其中一个序列映射成有序的, 另外一个序列再做相同的映射,没有的直接删掉,就变成了求另一个序列LIS. #include<bit ...
- 手机屏幕材质详解(TFT,TPS,OLED,AMOLED等)
手机屏幕概括起来就是两种,一个是LCD,一个是OLED屏幕,这两个是屏幕显示技术的两大基础. 一 . LCD:Liquid Crystal Display,这是一种介于固态和液态之间的物质,称为液晶技 ...
- Talent Show
6349: Talent Show 时间限制: 1 Sec 内存限制: 128 MB提交: 106 解决: 40[提交] [状态] [讨论版] [命题人:admin] 题目描述 Farmer Jo ...
- java8关于LocalDate,Date
关于java8中的新的时间日期类 public static void main(String[] args) { Date date = new Date(); LocalDate localDat ...