位运算简介及实用技巧(二):进阶篇(1)

=====   真正强的东西来了!   =====

二进制中的1有奇数个还是偶数个
    我们可以用下面的代码来计算一个32位整数的二进制中1的个数的奇偶性,当输入数据的二进制表示里有偶数个数字1时程序输出0,有奇数个则输出1。例如,1314520的二进制101000000111011011000中有9个1,则x=1314520时程序输出1。
var
   i,x,c:longint;
begin
   readln(x);
   c:=0;
   for i:=1 to 32 do
   begin
      c:=c + x and 1;
      x:=x shr 1;
   end;
   writeln( c and 1 );
end.

    但这样的效率并不高,位运算的神奇之处还没有体现出来。
    同样是判断二进制中1的个数的奇偶性,下面这段代码就强了。你能看出这个代码的原理吗?
var
   x:longint;
begin
   readln(x);
   x:=x xor (x shr 1);
   x:=x xor (x shr 2);
   x:=x xor (x shr 4);
   x:=x xor (x shr 8);
   x:=x xor (x shr 16);
   writeln(x and 1);
end.

    为了说明上面这段代码的原理,我们还是拿1314520出来说事。1314520的二进制为101000000111011011000,第一次异或操作的结果如下:

00000000000101000000111011011000
XOR  0000000000010100000011101101100
—————————————
    00000000000111100000100110110100

得到的结果是一个新的二进制数,其中右起第i位上的数表示原数中第i和i+1位上有奇数个1还是偶数个1。比如,最右边那个0表示原数末两位有偶数个1,右起第3位上的1就表示原数的这个位置和前一个位置中有奇数个1。对这个数进行第二次异或的结果如下:

00000000000111100000100110110100
XOR   000000000001111000001001101101
—————————————
    00000000000110011000101111011001

结果里的每个1表示原数的该位置及其前面三个位置中共有奇数个1,每个0就表示原数对应的四个位置上共偶数个1。一直做到第五次异或结束后,得到的二进制数的最末位就表示整个32位数里有多少个1,这就是我们最终想要的答案。

计算二进制中的1的个数
    同样假设x是一个32位整数。经过下面五次赋值后,x的值就是原数的二进制表示中数字1的个数。比如,初始时x为1314520(网友抓狂:能不能换一个数啊),那么最后x就变成了9,它表示1314520的二进制中有9个1。
x := (x and $55555555) + ((x shr 1) and $55555555); 
x := (x and $33333333) + ((x shr 2) and $33333333); 
x := (x and $0F0F0F0F) + ((x shr 4) and $0F0F0F0F); 
x := (x and $00FF00FF) + ((x shr 8) and $00FF00FF); 
x := (x and $0000FFFF) + ((x shr 16) and $0000FFFF);

    为了便于解说,我们下面仅说明这个程序是如何对一个8位整数进行处理的。我们拿数字211(我们班某MM的生日)来开刀。211的二进制为11010011。

+—+—+—+—+—+—+—+—+
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |   <—原数
+—+—+—+—+—+—+—+—+
|  1 0  |  0 1  |  0 0  |  1 0  |   <—第一次运算后
+——-+——-+——-+——-+
|    0 0 1 1    |    0 0 1 0    |   <—第二次运算后
+—————+—————+
|        0 0 0 0 0 1 0 1        |   <—第三次运算后,得数为5
+——————————-+

整个程序是一个分治的思想。第一次我们把每相邻的两位加起来,得到每两位里1的个数,比如前两位10就表示原数的前两位有2个1。第二次我们继续两两相加,10+01=11,00+10=10,得到的结果是00110010,它表示原数前4位有3个1,末4位有2个1。最后一次我们把0011和0010加起来,得到的就是整个二进制中1的个数。程序中巧妙地使用取位和右移,比如第二行中$33333333的二进制为00110011001100….,用它和x做and运算就相当于以2为单位间隔取数。shr的作用就是让加法运算的相同数位对齐。

二分查找32位整数的前导0个数
    这里用的C语言,我直接Copy的Hacker's Delight上的代码。这段代码写成C要好看些,写成Pascal的话会出现很多begin和end,搞得代码很难看。程序思想是二分查找,应该很简单,我就不细说了。
int nlz(unsigned x)
{
   int n;

if (x == 0) return(32);
   n = 1;
   if ((x >> 16) == 0) {n = n +16; x = x <<16;}
   if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
   if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
   if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
   n = n - (x >> 31);
   return n;
}

只用位运算来取绝对值
    这是一个非常有趣的问题。大家先自己想想吧,Ctrl+A显示答案。
    答案:假设x为32位整数,则x xor (not (x shr 31) + 1) + x shr 31的结果是x的绝对值
    x shr 31是二进制的最高位,它用来表示x的符号。如果它为0(x为正),则not (x shr 31) + 1等于$00000000,异或任何数结果都不变;如果最高位为1(x为负),则not (x shr 31) + 1等于$FFFFFFFF,x异或它相当于所有数位取反,异或完后再加一。

高低位交换
    这个题实际上是我出的,做为学校内部NOIp模拟赛的第一题。题目是这样:

给出一个小于2^32的正整数。这个数可以用一个32位的二进制数表示(不足32位用0补足)。我们称这个二进制数的前16位为“高位”,后16位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
  例如,数1314520用二进制表示为0000 0000 0001 0100 0000 1110 1101 1000(添加了11个前导0补足为32位),其中前16位为高位,即0000 0000 0001 0100;后16位为低位,即0000 1110 1101 1000。将它的高低位进行交换,我们得到了一个新的二进制数0000 1110 1101 1000 0000 0000 0001 0100。它即是十进制的249036820。

当时几乎没有人想到用一句位操作来代替冗长的程序。使用位运算的话两句话就完了。
var
   n:dword;
begin
   readln( n );
   writeln( (n shr 16) or (n  shl 16) );
end.

    而事实上,Pascal有一个系统函数swap直接就可以用。

二进制逆序
    下面的程序读入一个32位整数并输

二进制<2>的更多相关文章

  1. 使用struct处理二进制

    有的时候需要用python处理二进制数据,比如,存取文件.socket操作时.这时候,可以使用python的struct模块来完成. struct模块中最重要的三个函数是pack(), unpack( ...

  2. 如何开启MySQL 5.7.12 的二进制日志

    1. 打开/etc下的my.cnf文件 2. 编辑它,添加内容: log_bin=binary-log   #二进制日志的文件名 server_id=1  #必须指定server_id,这是MySQL ...

  3. 【.net 深呼吸】使用二进制格式来压缩XML文档

    在相当多的情况下,咱们写入XML文件默认是使用文本格式来写入的,如果XML内容是通过网络传输,或者希望节省空间,特别是对于XML文档较大的情况,是得考虑尽可能地压缩XML文件的大小. XmlDicti ...

  4. Javascript的二进制数据处理学习 ——nodejs环境和浏览器环境分别分析

    以前用JavaScript主要是处理常规的数字.字符串.数组对象等数据,基本没有试过用JavaScript处理二进制数据块,最近的项目中涉及到这方面的东西,就花一段时间学了下这方面的API,在此总结一 ...

  5. 浅析MySQL基于ROW格式的二进制日志

    上文分析的二进制日志实际上是基于STATEMENT格式的,下面我们来看看基于ROW格式的二进制日志,毕竟,两者对应的binlog事件类型也不一样,同时,很多童鞋反映基于ROW格式的二进制日志无法查到原 ...

  6. 浅析MySQL二进制日志

    查看MySQL二进制文件中的内容有两种方式 1.  mysqlbinlog 2.  SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offs ...

  7. asp.net将图片转成二进制存入数据库

    一.代码如下 int code = int.Parse(this.TextBox1.Text);//图片编码 string value = this.FileUpload1.PostedFile.Fi ...

  8. 二进制包安装MySQL数据库

    1.1二进制包安装MySQL数据库 1.1.1 安装前准备(规范) [root@Mysql_server ~]# mkdir -p /home/zhurui/tools ##创建指定工具包存放路径 [ ...

  9. sqlite3的图片的(二进制数据)存取操作

    sqlite3的图片的(二进制数据)存取操作   前言 上篇介绍了sqlite3的一些常用插入操作方法和注意事项,在实际项目中遇到了图片缓存的问题,由于服务器不是很稳定,且受到外界环境的干扰(例如断电 ...

  10. MySQL二进制日志

    一.二进制日志(The Binary Log) 1.简介 包含所有更新了的数据或者已经潜在更新了的数据(比如一条没有匹配任何行的delete语句) 包含所有更新语句执行时间的信息 不记录没有修改数据的 ...

随机推荐

  1. Paper: 《Bert》

    Bert: Bidirectional Encoder Representations from Transformers. 主要创新点:Masked LM 和 Next sentence predi ...

  2. HTML5语义

    语义通俗化为意义,也就是语义化的元素等于意义化的元素,看到这个元素的名称,就知道这个元素的意义,是拿来做什么用的,这就是HTML5的一个新特性,一个具有语义化的元素能够清楚的把元素的意义告诉浏览器和开 ...

  3. 在线聊天项目1.4版 使用Gson方法解析Json字符串以便重构request和response的各种请求和响应 解决聊天不畅问题 Gson包下载地址

    在线聊天项目结构图: 多用户登陆效果图: 多用户聊天效果图: 数据库效果图: 重新构建了Server类,使用了Gson方法,通过解析Json字符串,增加Info类,简化判断过程. Server类代码如 ...

  4. 接口的多态使用; 接口应用实例:U盘、打印机可以使用共同的USB接口,插入到电脑上实现各自的功能。

    接口的多态使用 接口应用实例:U盘.打印机可以使用共同的USB接口,插入到电脑上实现各自的功能.

  5. Java语言中的异常处理

    Java语言中的异常处理包括声明异常.抛出异常.捕获异常和处理异常四个环节.   throw用于抛出异常.   throws关键字可以在方法上声明该方法要抛出的异常,然后在方法内部通过throw抛出异 ...

  6. POJ-1426-Find the multiply

    这题深搜广搜都可以做,深搜的做法就是把每个由1 和 0 组成的数字拓展10倍以及拓展10倍+1,然后压入队列. 这样可以走过所有由10组成的数字,且两个方向平行发展(*10  +0和+1). bfs ...

  7. 洛谷 P1147 连续自然数和

    洛谷 P1147 连续自然数和 看到dalao们的各种高深方法,本蒟蒻一个都没看懂... 于是,我来发一篇蒟蒻友好型的简单题解 #include<bits/stdc++.h> using ...

  8. python入门:输出1-10以内除去7的所有数(简)

    #!/usr/bin/env python # -*- coding:utf-8 -*- #输出1-10以内除去7的所有数(简) """ 给变量kaishi赋值1,whi ...

  9. Python入门基础--字符编码与文件处理

    字符编码 文本编辑器存取文件的原理 #1.打开编辑器就打开了启动了一个进程,是在内存中的,所以,用编辑器编写的内容也都是存放与内存中的,断电后数据丢失 #2.要想永久保存,需要点击保存按钮:编辑器把内 ...

  10. hdu-2553 N皇后问题(搜索题)

    在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上. 你的任务是,对于给定的N,求出有多少种合法的放置方法. Inpu ...