ES搜索排序,文档相关度评分介绍——Vector Space Model
Vector Space Model
The vector space model provides a way of comparing a multiterm query against a document. The output is a single score that represents how well the document matches the query. In order to do this, the model represents both the document and the query as vectors.
A vector is really just a one-dimensional array containing numbers, for example:
[1,2,5,22,3,8]
In the vector space model, each number in the vector is the weight of a term, as calculated with term frequency/inverse document frequency.
While TF/IDF is the default way of calculating term weights for the vector space model, it is not the only way. Other models like Okapi-BM25 exist and are available in Elasticsearch. TF/IDF is the default because it is a simple, efficient algorithm that produces high-quality search results and has stood the test of time.
Imagine that we have a query for “happy hippopotamus.” A common word like happy will have a low weight, while an uncommon term like hippopotamus will have a high weight. Let’s assume that happyhas a weight of 2 and hippopotamus has a weight of 5. We can plot this simple two-dimensional vector—[2,5]—as a line on a graph starting at point (0,0) and ending at point (2,5), as shown inFigure 27, “A two-dimensional query vector for “happy hippopotamus” represented”.
Figure 27. A two-dimensional query vector for “happy hippopotamus” represented

Now, imagine we have three documents:
- I am happy in summer.
- After Christmas I’m a hippopotamus.
- The happy hippopotamus helped Harry.
We can create a similar vector for each document, consisting of the weight of each query term—happy and hippopotamus—that appears in the document, and plot these vectors on the same graph, as shown in Figure 28, “Query and document vectors for “happy hippopotamus””:
- Document 1:
(happy,____________)—[2,0] - Document 2:
( ___ ,hippopotamus)—[0,5] - Document 3:
(happy,hippopotamus)—[2,5]
Figure 28. Query and document vectors for “happy hippopotamus”

The nice thing about vectors is that they can be compared. By measuring the angle between the query vector and the document vector, it is possible to assign a relevance score to each document. The angle between document 1 and the query is large, so it is of low relevance. Document 2 is closer to the query, meaning that it is reasonably relevant, and document 3 is a perfect match.
In practice, only two-dimensional vectors (queries with two terms) can be plotted easily on a graph. Fortunately, linear algebra—the branch of mathematics that deals with vectors—provides tools to compare the angle between multidimensional vectors, which means that we can apply the same principles explained above to queries that consist of many terms.
You can read more about how to compare two vectors by using cosine similarity.
Now that we have talked about the theoretical basis of scoring, we can move on to see how scoring is implemented in Lucene.
ES搜索排序,文档相关度评分介绍——Vector Space Model的更多相关文章
- ES搜索排序,文档相关度评分介绍——TF-IDF—term frequency, inverse document frequency, and field-length norm—are calculated and stored at index time.
Theory Behind Relevance Scoring Lucene (and thus Elasticsearch) uses the Boolean model to find match ...
- ES搜索排序,文档相关度评分介绍——Field-length norm
Field-length norm How long is the field? The shorter the field, the higher the weight. If a term app ...
- ES 文档与索引介绍
在之前的文章中,介绍了 ES 整体的架构和内容,这篇主要针对 ES 最小的存储单位 - 文档以及由文档组成的索引进行详细介绍. 会涉及到如下的内容: 文档的 CURD 操作. Dynamic Mapp ...
- ES-PHP向ES批量添加文档报No alive nodes found in your cluster
ES-PHP向ES批量添加文档报No alive nodes found in your cluster 2016年12月14日 12:31:40 阅读数:2668 参考文章phpcurl 请求Chu ...
- atitit.vod search doc.doc 点播系统搜索功能设计文档
atitit.vod search doc.doc 点播系统搜索功能设计文档 按键的enter事件1 Left rig事件1 Up down事件2 key_events.key_search = fu ...
- 认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法。元素、属性和文本的树结构(节点树)。
认识DOM 文档对象模型DOM(Document Object Model)定义访问和处理HTML文档的标准方法.DOM 将HTML文档呈现为带有元素.属性和文本的树结构(节点树). 先来看看下面代码 ...
- es之对文档进行更新操作
5.7.1:更新整个文档 ES中并不存在所谓的更新操作,而是用新文档替换旧文档: 在内部,Elasticsearch已经标记旧文档为删除并添加了一个完整的新文档并建立索引.旧版本文档不会立即消失 ,但 ...
- es搜索排序不正确
沿用该文章里的数据https://www.cnblogs.com/MRLL/p/12691763.html 查询时发现,一模一样的name,但是相关度不一样 GET /z_test/doc/_sear ...
- MongoDB中的映射,限制记录和记录拼排序 文档的插入查询更新删除操作
映射 在 MongoDB 中,映射(Projection)指的是只选择文档中的必要数据,而非全部数据.如果文档有 5 个字段,而你只需要显示 3 个,则只需选择 3 个字段即可. find() 方法 ...
随机推荐
- VUE 路由变化页面数据不刷新问题
出现这种情况是因为依赖路由的params参数获取写在created生命周期里面,因为相同路由二次甚至多次加载的关系 没有达到监听,退出页面再进入另一个文章页面并不会运行created组件生命周期,导致 ...
- C语言八进制和十六进制数
一 赋值 int dex = 100;// 默认十进制 int oct = 0144;// 八进制,以0開始 int hex = 0x64;// 十六进制,以0x開始 二 输出 void show(i ...
- Apache上部署Django
0. 部署环境 Ubuntu 14.04 on AliYun Apache 2.4.7 Python 3 [2.7升级3请看http://www.cnblogs.com/manhua/p/423504 ...
- Oracle中Hint深入理解(原创)
http://czmmiao.iteye.com/blog/1478465 Hint概述 基于代价的优化器是很聪明的,在绝大多数情况下它会选择正确的优化器,减轻了DBA的负担.但有时它也聪明反被聪明 ...
- HDOJ Oulipo 1686【KMP】
Oulipo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- vue proxyTable
Vue-cli proxyTable 解决开发环境的跨域问题 字数474 阅读1685 评论1 喜欢3 和后端联调时总是会面对恼人的跨域问题,最近基于Vue开发项目时也遇到了这个问题,两边各自想了一堆 ...
- 深入Asyncio(六)Tasks and Futures
Tasks and Futures 大多数的工作只涉及到Task.create_task()方法,就像前面代码一样,Future是Task的父类,提供与loop交互的所有功能. Future对象表示某 ...
- vagrant 介绍,安装与使用
可以帮你统一团队成员的开发环境.如果你或者你的伙伴创建了一个Vagrantfile,那么你只需要执行vagrant up就行了,所有的软件都会安装并且配置好.团队成员可以通过相同的Vagrantfil ...
- shell 获取当前svn代码目录版本号
在当前svn代码目录下执行以下命令: svn info | grep "Last Changed Rev:" | awk -F ': ' '{print $2}' > svn ...
- python 基础 4.1 函数的参数
#/usr/bin/python #coding=utf-8 #@Time :2017/10/24 9:09 #@Auther :liuzhenchuan #@File :函数的参数.py # ...