动态规划求解0-1背包问题:

问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大。

动态规划核心:计算并存储小问题的最优解,并将这些最优解组合成大问题的最优解。(将原问题分解为若干子问题,然后自底向上,先求解最小的子问题,把结果存储在表格中,再求解大的子问题时,直接从表格中查询小的子问题的解,避免重复计算,从而让提高算法效率)

解决本问题思路:对于第 i 个物品,放入后可以取得最大的价值,那么,前 i-1 个物品在背包容量为 w-w[i] 的情况下能够取到最大的价值。(注:因为第 i 个物品可以放入,对应要占用背包 w[i] 的容量,所以 w-w[i] 的背包容量就是前 i-1 个物品所共有的总容量)

数据结构: value[i][j] 的值表示第 i 个物品放入背包大小为 j 的背包得最大价值。

递归式:

# -*- coding:utf-8 -*-
def main(): w = int(input()) #背包大小
n = int(input()) #物品个数 listWV = [[0,0]]
listTemp = [] for i in range(n):
listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加入到listWV中
listWV.append(listTemp) #依次输入每个物品的重量与价值 # 建立价值数组,初始值均为0,目的是为了在value[0][j]与value[i][0]的情况为0,毕竟不放入物品或者背包容量为0的情况下,背包中的价值肯定为0,
value = [[0 for i in range(w+1)] for j in range(n+1)] for i in range(1, n+1):
for j in range(1, w+1):
if j < listWV[i][0]: #若物品不能放到背包中
value[i][j] = value[i-1][j] #价值与之前相同
else: #物品可以放到背包中,最大价值在两者之中取
value[i][j] = max(value[i-1][j], value[i-1][j-listWV[i][0]]+listWV[i][1]) print(value[n][w]) if __name__ == '__main__':
main()

检测:

10
5
2 6
5 3
4 5
2 4
3 6 17

上述代码只打印了最大价值,若想要打印出分别是那几个物品装入,则:

# -*- coding:utf-8 -*-
def main(): w = int(input()) #背包大小
n = int(input()) #物品个数 listWV = [[0,0]]
listTemp = [] for i in range(n):
listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加入到listWV中
listWV.append(listTemp) #依次输入每个物品的重量与价值 # 建立价值数组,初始值均为0,目的是为了在value[0][j]与value[i][0]的情况为0,毕竟不放入物品或者背包容量为0的情况下,背包中的价值肯定为0,
value = [[0 for i in range(w+1)] for j in range(n+1)] for i in range(1, n+1):
for j in range(1, w+1):
if j < listWV[i][0]: #若物品不能放到背包中
value[i][j] = value[i-1][j] #价值与之前相同
else: #物品可以放到背包中,最大价值在两者之中取
value[i][j] = max(value[i-1][j], value[i-1][j-listWV[i][0]]+listWV[i][1]) print(value[n][w]) #打印放入的物品情况,需要遍历value数组
i = n
j = w
listInfo = [0 for i in range(n+1)]
while i>0:
if value[i][j] > value[i-1][j]: #若在背包容量相同的情况下,后一个物品对应的背包价值大于了前一个物品对应的背包价值,那么说明第i个物品一定放入了背包
listInfo[i] = 1
j = j - listWV[i][0]
i -= 1 listFlag = []
for i in range(len(listInfo)):
if listInfo[i] == 1:
listFlag.append(i) print(listFlag) if __name__ == '__main__':
main()

检测:

10
5
2 6
5 3
4 5
2 4
3 6 17
[1, 3, 5]

0-1背包问题——动态规划求解【Python】的更多相关文章

  1. 01背包问题(动态规划)python实现

    01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题, ...

  2. C++动态规划求解0-1背包问题

    问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大? 细节须知: 暂无. 算法原理: a.最优子结构性质 ...

  3. Java实现动态规划法求解0/1背包问题

    摘要: 使用动态规划法求解0/1背包问题. 难度: 初级 0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进 ...

  4. 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列

    0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...

  5. 蓝桥杯 0/1背包问题 (java)

      今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...

  6. 背包问题(Knapsack problem)采用动态规划求解

    问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号.单价与重量如下所示:0李子4KGNT$45001苹果5KGNT$57002橘子2 ...

  7. hdu2602Bone Collector ——动态规划(0/1背包问题)

    Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collec ...

  8. Python动态规划求解最长递增子序列(LIS)

    原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列

  9. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

随机推荐

  1. Kotlin介绍

    Kotlin介绍 转 https://www.jianshu.com/p/d30406daaf25 Google在今年的IO大会上宣布,将Android开发的官方语言更换为Kotlin,作为跟着Goo ...

  2. ISO/IEC 9899:2011 条款6.5.8——关系操作符

    6.5.8 关系操作符 语法 1.relational-expression: shift-expression relational-expression    <    shift-expr ...

  3. QQ第三方登录回调地址的问题

    如题,维护以前的项目,发现原来QQ的第三方登录竟然失败了.回调地址的问题 原来是以前的规则变了.好吧,那就改,谁叫我不是改变规则的人. 中途浪费了点时间,项目很大,我一下也找不到项目里那个接口调用的, ...

  4. jenkins-不能启动

    FROM centos RUN docker run -tdi --privileged centos init ADD jdk-8u171-linux-x64.tar.gz /usr/local A ...

  5. C#语法中的select

    第一次学着用Linq的盆友们,可以看看哈.... 代码 Code highlighting produced by Actipro CodeHighlighter (freeware)http://w ...

  6. git当前项目免密提交

    在项目目录下,执行: vim .git/config 在url后边添加用户名密码即可 ``` [core] repositoryformatversion = filemode = true bare ...

  7. 012 Android 动画效果(补间动画) +去掉App默认自带的标题+更改应用的图标

    1.介绍 补间动画开发者只需指定动画开始,以及动画结束"关键帧", 而动画变化的"中间帧"则由系统计算并补齐! 2.去掉App的标题 (1)将AndroidMa ...

  8. 【转帖】2011-2018年中国IPv6地址数量及国际出口带宽数走势情况[图]

    2011-2018年中国IPv6地址数量及国际出口带宽数走势情况[图] http://www.chyxx.com/industry/201910/791801.html 三亿多ipv4的地址. 接近9 ...

  9. [.NET Core] - 使用 EF Core 的 Scaffold-DbContext 脚手架命令创建 DbContext

    Scaffold-DbContext 命令 参数 Scaffold-DbContext [-Connection] <String> [-Provider] <String> ...

  10. MySQL常用的系统函数

    MySQL常用的系统函数 2019年01月17日 17:49:14 pan_junbiao 阅读数 155    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csd ...