import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector #载入数据集
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
#运行次数
max_steps = 1001
#图片数量
image_num = 3000 # 最多10000,因为测试集为10000
#文件路径
DIR = "C:/Users/FELIX/Desktop/tensor学习/" #定义会话
sess = tf.Session() #载入图片
embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding') #参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)#平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)#标准差
tf.summary.scalar('max', tf.reduce_max(var))#最大值
tf.summary.scalar('min', tf.reduce_min(var))#最小值
tf.summary.histogram('histogram', var)#直方图 #命名空间
with tf.name_scope('input'):
#这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32,[None,784],name='x-input')
#正确的标签
y = tf.placeholder(tf.float32,[None,10],name='y-input') #显示图片
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) # -1表示不确定的值
tf.summary.image('input', image_shaped_input, 10) # 一共放10张图片 with tf.name_scope('layer'):
#创建一个简单神经网络
with tf.name_scope('weights'):
W = tf.Variable(tf.zeros([784,10]),name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]),name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x,W) + b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b) with tf.name_scope('loss'):
#交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #初始化变量
sess.run(tf.global_variables_initializer()) with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
with tf.name_scope('accuracy'):
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
tf.summary.scalar('accuracy',accuracy) #产生metadata文件
if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'):# 检测是否已存在
tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv')
with open(DIR + 'projector/projector/metadata.tsv', 'w') as f:
labels = sess.run(tf.argmax(mnist.test.labels[:],1))
for i in range(image_num):
f.write(str(labels[i]) + '\n') #合并所有的summary
merged = tf.summary.merge_all() projector_writer = tf.summary.FileWriter(DIR + 'projector/projector',sess.graph)
saver = tf.train.Saver() # 用来保存网络模型
config = projector.ProjectorConfig() # 定义了配置文件
embed = config.embeddings.add()
embed.tensor_name = embedding.name
embed.metadata_path = DIR + 'projector/projector/metadata.tsv'
embed.sprite.image_path = DIR + 'projector/data/mnist_10k_sprite.png'
embed.sprite.single_image_dim.extend([28,28])
projector.visualize_embeddings(projector_writer,config) # 可视化的一个工具 for i in range(max_steps):
#每个批次100个样本
batch_xs,batch_ys = mnist.train.next_batch(100) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata() summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys},options=run_options,run_metadata=run_metadata)
projector_writer.add_run_metadata(run_metadata, 'step%03d' % i)
projector_writer.add_summary(summary, i) # 每训练100次打印准确率
if i%100 == 0:
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print ("Iter " + str(i) + ", Testing Accuracy= " + str(acc)) # 训练完保存模型
saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps)
projector_writer.close()
sess.close()

执行之前先在当前目录下建立projector文件夹,然后在projector文件夹下建立data和projector文件夹。

在data文件夹下放入数据图片--》数据图片下载地址 提取码:vhkl

然后运行后打开cmd,进入当前文件夹,执行:tensorboard --logdir=C:\Users\FELIX\Desktop\tensor学习\projector\projector

然后就可以看到全部的可视化。

迭代500多次后,由原来较混乱的逐渐的分类,因为模型的准确率只有90%左右,所有有一些会分错类的情况

TensorFlow(八):tensorboard可视化的更多相关文章

  1. 学习TensorFlow,TensorBoard可视化网络结构和参数

    在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...

  2. Tensorflow 之 TensorBoard可视化Graph和Embeddings

    windows下使用tensorboard tensorflow 官网上的例子程序都是针对Linux下的:文件路径需要更改 tensorflow1.1和1.3的启动方式不一样 :参考:Running ...

  3. 基于TensorFlow进行TensorBoard可视化

    # -*- coding: utf-8 -*- """ Created on Thu Nov 1 17:51:28 2018 @author: zhen "&q ...

  4. Tensorflow细节-Tensorboard可视化-简介

    先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summ ...

  5. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  6. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  7. TensorFlow从0到1之TensorBoard可视化数据流图(8)

    TensorFlow 使用 TensorBoard 来提供计算图形的图形图像.这使得理解.调试和优化复杂的神经网络程序变得很方便.TensorBoard 也可以提供有关网络执行的量化指标.它读取 Te ...

  8. Windows系统,Tensorflow的Tensorboard工具细节问题

    随着跟着TensorFlow视频学习,学到Tensorboard可视化工具这里的时候. 在windows,cmd里面运行,tensorboard --logdir=你logs文件夹地址  这行代码,一 ...

  9. Tensorflow 笔记 -- tensorboard 的使用

    Tensorflow 笔记 -- tensorboard 的使用 TensorFlow提供非常方便的可视化命令Tensorboard,先上代码 import tensorflow as tf a = ...

随机推荐

  1. Singer House CodeForces - 830D (组合计数,dp)

    大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数. $DP$好题. 首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案 ...

  2. 安利一下stringstream

    关于实用的 stringstream 处理毒瘤输入数据 比如这个题 在输入的时候有很多问题,如果用scanf输入char型字符串,那么不好用map判断,并且读入整行判断换行会很麻烦 如果选择用stri ...

  3. logback日志无法按日期分割的问题

    发现在线上的时候,日志无法按日期分割的问题,所有日志都在第一天部署的那个日期的文件里面. 背景是Springboot + logback 原因是: 之前是: 用timeBaseRollingPolic ...

  4. 字符串replace的理解和练习和配合正则表达式的使用

    下面代码展示了(demo地址 https://codepen.io/peach_/pen/jONJjRY): 1.字符串replace的理解和练习和配合正则表达式的使用, 2.正则表达式学习 3.通过 ...

  5. Python初识对象

    一 楔子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战>的游戏,你就思考呀,人狗作战,那至少需要2个角色,一个是人, 一个是狗,且人和狗都有不同的技能,比如人拿棍打狗, ...

  6. Linux下如何挂载文件,并设置开机自动挂载

    首先保证服务端安装了 查看是否安装命令: nfsstat yum install nfs-utils 安装nfs-utils 192.168.50.85(服务端)192.168.50.83(客户端) ...

  7. 【转载】C#将字符串中字母全部转换为大写或者小写

    在C#的编程开发过程中,有时候判断字符串是否相等时,并不关注字母的大小写,此时在C#中可以使用ToUpper方法将字符串中所有的字母转换为大写,使用ToLower方法可以将字符串中所有字母转换为小写. ...

  8. Thinkphp中的assign() 和 display()

    说到 $this->assign()  与 $this->display()想必用过TP框架的都不陌生,那么今天我们就来说说他们的作用及其他用法. 先说 $this->assign( ...

  9. [LeetCode] 671. 二叉树中第二小的节点 ☆(递归 合并)

    描述 给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0.如果一个节点有两个子节点的话,那么这个节点的值不大于它的子节点的值. 给出这样的一个二叉树,你需要输出所有 ...

  10. unittest管理测试用例

    #coding=utf-8 from selenium import webdriver from time import sleep import unittest #导入unittest库 imp ...