1.方阵的迹

方阵的迹就是方阵的主对角线元素之和

# -*- coding:utf-8 -*-
# @Author: WanMingZhu
# @Date: 2019/8/12 9:37 import numpy as np arr = np.random.randint(1, 5, size=(4, 4))
print(arr)
# 调用np.trace便可求出矩阵的迹
print(np.trace(arr))
"""
[[1 4 2 3]
[3 2 2 2]
[3 2 3 3]
[1 4 2 4]]
10
"""

2.如何求两个矩阵之间的距离

import numpy as np

arr1 = np.array([[0, 1],
[1, 0]]) arr2 = np.array([[1, 1],
[1, 1]])
# 先计算a和b的差,得出arr3
arr3 = arr1 - arr2
# 然后让arr3和arr3本身进行点乘
arr4 = arr3 @ arr3
# 此时arr4的迹便是距离的平方
print(np.trace(arr4)) # 2

3.如何求出一个矩阵的逆矩阵和伴随矩阵

import numpy as np

a = np.array([[1, -2, 1],
[0, 2, -1],
[1, 1, -2]])
# 直接对a使用np.linalg.inv即可求出逆矩阵
a_inv = np.linalg.inv(a)
print(a_inv)
"""
[[ 1. 1. 0. ]
[ 0.33333333 1. -0.33333333]
[ 0.66666667 1. -0.66666667]]
""" # 使用np.linalg.det(a)求出行列式的值
a_det = np.linalg.det(a)
print(a_det) # -3.0000000000000004 # 然后逆矩阵a_inv和行列式的值a_det相乘即可得出伴随矩阵
print(a_inv * a_det)
"""
[[-3. -3. -0.]
[-1. -3. 1.]
[-2. -3. 2.]]
"""

4.如何解多元一次方程

import numpy as np

"""
x+2y+z=7
2x-y+3z=7
3x+y+2z=18
求这个方程组的解
"""
# 首先将系数写下来,排成一个矩阵
a = np.array([[1, 2, 1],
[2, -1, 3],
[3, 1, 2]])
# 将右边的常数写下来,排成一个矩阵
b = np.array([7, 7, 18])
# 求解,将参数传进去
x = np.linalg.solve(a, b)
print(x) # [ 7. 1. -2.]
# 验证
print(a @ x) # [ 7. 7. 18.]

5.求矩阵的秩

import numpy as np

# 生成4行4列的单位矩阵
i = np.eye(4)
print(i)
"""
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
"""
# 求出秩
print(np.linalg.matrix_rank(i)) # 4 # 修改一个值
i[0, 0] = 0
print(np.linalg.matrix_rank(i)) # 3

6.求协方差矩阵

import numpy as np

a = np.array([170, 180, 175])
b = np.array([65, 80, 70])
print(np.cov([a, b]))
"""
[[25. 37.5 ]
[37.5 58.33333333]]
"""

7.求相关矩阵

import numpy as np

a = np.array([170, 180, 175])
b = np.array([65, 80, 70])
print(np.corrcoef([a, b]))
"""
[[1. 0.98198051]
[0.98198051 1. ]]
"""

8.生成一个方程

import numpy as np

x = np.poly1d([1, 1, 1, 1])
print(x)
"""
3 2
1 x + 1 x + 1 x + 1
就是x^3 + x^2 + x + 1
"""
# 怎么生成出来的呢?
# 如果矩阵里面有4个元素,那么未知数的最高次幂就是3
# 然后矩阵里面的元素就是对应项的系数
# 比如我想生成 8 * x^5 + 4 * x^3 + 3 * x^2 + x
"""
首先最高次幂是5,就意味着数组里面有6个值
x^5次幂对应的系数是8,说明第一个值是8
没有x^4,说明x^4对应的系数是0,说明第二个元素是0。虽然是0,但是必须要写,不然numpy不知道你要生成最高几次幂的函数
"""
# 别忘记了最后要加上一个0
x = np.poly1d([8, 0, 4, 3, 1, 0])
print(x)
"""
5 3 2
8 x + 4 x + 3 x + 1 x
""" # 另外我向x里面传值,还可以根据当前的自变量计算出对应的函数
print(x(3)) # 2082
print(8 * 3 ** 5 + 4 * 3 ** 3 + 3 * 3 ** 2 + 3) # 2082

9.求出一个函数的导数

import numpy as np

x = np.poly1d([2, 1, 1])
print(x)
"""
2
2 x + 1 x + 1
"""
# 调用deriv进行求导
x1 = x.deriv()
print(x1) # 4 x + 1
# 显然这个结果是正确的
# 同样的,我们也可以计算相应的导数值
print(x1(3)) # 13

numpy中与高等数学有关的函数的更多相关文章

  1. numpy中与金融有关的函数

    fv函数 计算未来的价值 def fv(rate, nper, pmt, pv, when='end'): ... 参数: rate:存款/贷款每期的利率 nper:存款/贷款期数 pmt:存款/贷款 ...

  2. numpy中的argpartition

    numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None) 在快排算法中,有一个典型的操作:partition.这个操作指: ...

  3. python -- numpy 基本数据类型,算术运算,组合,分割 函数

    0 NumPy数组 NumPy数组:NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数据 NumPy数组属性: ndim(纬数,x,y 2),sha ...

  4. numpy中linspace用法 (等差数列创建函数)

    linspace  函数 是创建等差数列的函数, 最好是在 Matlab  语言中见到这个函数的,近期在学习Python 中的 Numpy, 发现也有这个函数,以下给出自己在学习过程中的一些总结. ( ...

  5. Numpy中Meshgrid函数介绍及2种应用场景

    近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法 ...

  6. numpy中的arg系列函数

    numpy中的arg系列函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 不定期更新,现学现卖 numpy中arg系列函数被经常使用,通常先进行排序然后返回原数组特定的索引. argmax ...

  7. 内置函数和numpy中的min(),max()函数

    内置min()函数 numpy中的min()函数:

  8. Numpy中扁平化函数ravel()和flatten()的区别

    在Numpy中经常使用到的操作由扁平化操作,Numpy提供了两个函数进行此操作,他们的功能相同,但在内存上有很大的不同. 先来看这两个函数的使用: from numpy import * a = ar ...

  9. numpy中的快速的元素级数组函数

    numpy中的快速的元素级数组函数 一元(unary)ufunc 对于数组中的每一个元素,都将元素代入函数,将得到的结果放回到原来的位置 >>> import numpy as np ...

随机推荐

  1. 学习Oracle数据库入门到精通教程资料合集

    任何大型信息系统,都需要有数据库管理系统作为支撑.其中,Oracle以其卓越的性能获得了广泛的应用.本合集汇总了学习Oracle数据库从入门到精通的30份教程资料. 资料名称 下载地址 超详细Orac ...

  2. 【汇总】数据库提权(mysql、mssql)

    日期:2018-04-03 11:46:45 作者:Bay0net 介绍:利用 mssql 的 sa 账号提权.利用 MySQL 的 UDF 提权 0x01.mssql 提权 恢复 xp_cmdshe ...

  3. linux 基础 复制window文件到linux

    1.下载pscp工具:地址 2.dos执行命令: pscp F:\his.rar root@192.168.3.137:/tmp/test

  4. 《Neural Networks and Deep Learning》课程笔记

    Lesson 1 Neural Network and Deep Learning 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第一门课程的课程笔记. 参考了其他人的笔记继续归纳 ...

  5. 基于durid的JDBCUtils工具类

    1.JDBCUtils类 package com.alphajuns.utils; import com.alibaba.druid.pool.DruidDataSourceFactory; impo ...

  6. Servlet(4):Session

    Session, Cookie及交互 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session. Cookie通过在客户端记录信息确 ...

  7. Golang中基础的命令行模块urfave/cli

    前言相信只要部署过线上服务,都知道启动参数一定是必不可少的,当你在不同的网络.硬件.软件环境下去启动一个服务的时候,总会有一些启动参数是不确定的,这时候就需要通过命令行模块去解析这些参数,urfave ...

  8. 云计算核心组件--keystone身份认证服务(5)

    一.Keystone介绍: keystone 是OpenStack的组件之一,用于为OpenStack家族中的其它组件成员提供统一的认证服务,包括身份验证.令牌的发放和校验.服务列表.用户权限的定义等 ...

  9. redhat 5 中文乱码

    安装 1.fonts-chinese-3.02-9.6.el5.noarch.rpm. 如果无法安装,则加个--force 2.fonts-ISO8859-2-75dpi-1.0-17.1.noarc ...

  10. 通道的分离与合并,ROI,

    通道的分离与合并 class Program { static void Main(String[] args) { Mat img = CvInvoke.Imread(@"C:\Users ...