一 死锁现象与递归锁

进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁

from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock() class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutexA.acquire()
print('\033[41m%s 拿到A锁\033[0m' %self.name) mutexB.acquire()
print('\033[42m%s 拿到B锁\033[0m' %self.name)
mutexB.release() mutexA.release() def func2(self):
mutexB.acquire()
print('\033[43m%s 拿到B锁\033[0m' %self.name)
time.sleep(2) mutexA.acquire()
print('\033[44m%s 拿到A锁\033[0m' %self.name)
mutexA.release() mutexB.release() if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start() '''
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁
然后就卡住,死锁了
'''

解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
 

二 信号量Semaphore

同进程的一样

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):

from threading import Thread,Semaphore
import threading
import time
# def func():
# if sm.acquire():
# print (threading.currentThread().getName() + ' get semaphore')
# time.sleep(2)
# sm.release()
def func():
sm.acquire()
print('%s get sm' %threading.current_thread().getName())
time.sleep(3)
sm.release()
if __name__ == '__main__':
sm=Semaphore(5)
for i in range(23):
t=Thread(target=func)
t.start()

与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程

 

三 Event事件

同进程的一样

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

event.isSet():返回event的状态值;

event.wait():如果 event.isSet()==False将阻塞线程;

event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;

event.clear():恢复event的状态值为False。

例如,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作

from threading import Thread,Event
import threading
import time,random
def conn_mysql():
count=1
while not event.is_set():
if count > 3:
raise TimeoutError('链接超时')
print('<%s>第%s次尝试链接' % (threading.current_thread().getName(), count))
event.wait(0.5)
count+=1
print('<%s>链接成功' %threading.current_thread().getName()) def check_mysql():
print('\033[45m[%s]正在检查mysql\033[0m' % threading.current_thread().getName())
time.sleep(random.randint(2,4))
event.set()
if __name__ == '__main__':
event=Event()
conn1=Thread(target=conn_mysql)
conn2=Thread(target=conn_mysql)
check=Thread(target=check_mysql) conn1.start()
conn2.start()
check.start()
 

四 定时器

定时器,指定n秒后执行某操作

from threading import Timer

def hello():
print("hello, world") t = Timer(1, hello)
t.start() # after 1 seconds, "hello, world" will be printed
 

五 线程queue

queue队列 :使用import queue,用法与进程Queue一样

queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.

class queue.Queue(maxsize=0) #先进先出
import queue

q=queue.Queue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
'''

class queue.LifoQueue(maxsize=0) #last in fisrt out 

import queue

q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''

class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

import queue

q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c')) print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''

其他

Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items that can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form: (priority_number, data).

exception queue.Empty
Exception raised when non-blocking get() (or get_nowait()) is called on a Queue object which is empty. exception queue.Full
Exception raised when non-blocking put() (or put_nowait()) is called on a Queue object which is full. Queue.qsize()
Queue.empty() #return True if empty
Queue.full() # return True if full
Queue.put(item, block=True, timeout=None)
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case). Queue.put_nowait(item)
Equivalent to put(item, False). Queue.get(block=True, timeout=None)
Remove and return an item from the queue. If optional args block is true and timeout is None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an item if one is immediately available, else raise the Empty exception (timeout is ignored in that case). Queue.get_nowait()
Equivalent to get(False). Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer threads. Queue.task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete. If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue). Raises a ValueError if called more times than there were items placed in the queue. Queue.join() block直到queue被消费完毕
 
 
 
 
 
 
 

python并发编程之线程(二):死锁和递归锁&信号量&定时器&线程queue&事件evevt的更多相关文章

  1. python开发线程:死锁和递归锁&信号量&定时器&线程queue&事件evevt

    一 死锁现象与递归锁 进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将 ...

  2. python并发编程之多线程2---(死锁与递归锁,信号量等)

    一.死锁现象与递归锁 进程也是有死锁的 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用, 它们都将无法推进下去.此时称系统处于死锁状态或系统 ...

  3. python并发编程之多线程2死锁与递归锁,信号量等

    一.死锁现象与递归锁 进程也是有死锁的 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用, 这些永远在互相等待的进程称为死锁进程 如下就是死锁 ...

  4. 死锁与递归锁 信号量 event 线程queue

    1.死锁现象与递归锁 死锁:是指两个或两个以上的进程或线程在执行过程中,因争抢资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去,此时称系统处于死锁状态或系统产生了死锁,这些永远在互相 ...

  5. python并发编程&多线程(二)

    前导理论知识见:python并发编程&多线程(一) 一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性 官网链 ...

  6. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  7. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  8. 同步锁 死锁与递归锁 信号量 线程queue event事件

    二个需要注意的点: 1 线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock任然没有被释放则阻塞,即便是拿到执行权限GIL也要 ...

  9. GIL全局解释器锁-死锁与递归锁-信号量-event事件

    一.全局解释器锁GIL: 官方的解释:掌握概念为主 """ In CPython, the global interpreter lock, or GIL, is a m ...

随机推荐

  1. windows注册服务

    Windows服务是运行一些服务程序的较好方式(这些程序专门为各种功能提供服务,无操作界面,运行在后台),其创建方法也很简单,通过系统自带的sc命令即可方便的创建. sc命令创建Windows服务的方 ...

  2. 剑指offer 66. 构建乘积数组(Leetcode 238. Product of Array Except Self)

    剑指offer 66. 构建乘积数组 题目: 给定一个数组A[0, 1, ..., n-1],请构建一个数组B[0, 1, ..., n-1],其中B中的元素B[i] = A[0] * A[1] * ...

  3. CRLF——http response 拆分攻击(webgoat)

    0x01 什么是CRLF CRLF是“回车+换行”(\r和\n)/(%0d和%0a)的简称. CRLF利用: 正常输入的请求中加入恶意代码,控制HTTP响应header中的字符(Location,Se ...

  4. 【ARM-Linux开发】内核3.x版本之后设备树机制

    内核3.x版本之后设备树机制 Based  on  Linux  3.10.24  source  code  参考/documentation/devicetree/Booting-without- ...

  5. php display_errors

    // 检测开发环境 public function setReporting() { if (APP_DEBUG === true) { error_reporting(E_ALL); ini_set ...

  6. mongodb 连接后无法使用 发现已经有进程在运行

    mongod 命令执行发现已经有进程在运行mongod数据库--errno:48 Address already in use for socket: 0.0.0.0:27017 错误信息: list ...

  7. Netty学习篇③--整合springboot

    经过前面的netty学习,大概了解了netty各个组件的概念和作用,开始自己瞎鼓捣netty和我们常用的项目的整合(很简单的整合) 项目准备 工具:IDEA2017 jar包导入:maven 项目框架 ...

  8. oracle - for in loop 循环更新

    用法:目的更新B表的数据 查询出A表的字段,命名为表1.然后更新B表 BEGIN FOR 表1 IN ( SELECT [匹配字段],[更新字段] FROM A表 ) loop UPDATE B表 S ...

  9. mysql非主键提示key2 检查索引是否设定为唯一

  10. LRU算法简介

    LRU是什么? 按照英文的直接原义就是Least Recently Used,最近最久未使用法,它是按照一个非常注明的计算机操作系统基础理论得来的:最近使用的页面数据会在未来一段时期内仍然被使用,已经 ...