牛券Cow Coupons
USACO12FEB
久违的奶牛题。
题意:
FJ准备买一些新奶牛,市场上有 $ N $ 头奶牛 $ (1 \leq N \leq 50000) $ ,第i头奶牛价格为 $ P_i (1 \leq P_i \leq 10^9) $ 。FJ有K张优惠券,使用优惠券购买第i头奶牛时价格会降为 $ C_i(1\leq C_i \leq P_i) $ ,每头奶牛只能使用一次优惠券。FJ想知道花不超过 $ M(1 \leq M \leq 10^{14}) $ 的钱最多可以买多少奶牛?
解法:
在ZR时摸鱼王讲的一道贪心题。
但这道题并不是一道裸贪心,直接对 $ C $ 排序,取前 $ k $ 个数并不完全对,具体为什么自己想想。
正确的做法依旧是贪心,不过是可以反悔的贪心。
我们优先处理使用优惠券之后最便宜的几头牛,然后选择剩下的牛中不用券最便宜的,之后判断要不要将用过的一张券转用给一头新的牛。
具体做法就是开一个大根堆,每次维护 $ price_i - cost_i $ 就可以了。
CODE:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define LL long long
#define N 50010
LL n,k,m;
struct cow {
LL price,cost;
} node[N];
inline bool cmp1(cow a,cow b) {
return a.cost < b.cost;
}
inline bool cmp2(cow a,cow b) {
return a.price < b.price;
}
priority_queue<LL,vector<LL>,greater<LL> > q;
int main() {
scanf("%lld%lld%lld",&n,&k,&m);
for(int i = 1 ; i <= n ; i++)
scanf("%lld%lld",&node[i].price,&node[i].cost);
sort(node + 1,node + n + 1,cmp1);
LL sum = 0;
for(int i = 1 ; i <= k ; i++) {
sum += node[i].cost;
if(sum > m) {
printf("%d \n",i - 1);
//system("pause");
return 0;
}
q.push(node[i].price - node[i].cost);
}
sort(node + k + 1,node + n + 1,cmp2);
for(int i = k + 1 ; i <= n ; i++) {
int u = node[i].price - node[i].cost;
if(u > q.top()) {
sum += q.top();
q.pop();
q.push(u);
sum += node[i].cost;
}
else sum += node[i].price;
if(sum > m) {
printf("%d \n",i - 1);
//system("pause");
return 0;
}
}
printf("%lld \n",n);
//system("pause");
return 0;
}
牛券Cow Coupons的更多相关文章
- 洛谷P3045 [USACO12FEB]牛券Cow Coupons
P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...
- [USACO12FEB]牛券Cow Coupons(堆,贪心)
[USACO12FEB]牛券Cow Coupons(堆,贪心) 题目描述 Farmer John needs new cows! There are N cows for sale (1 <= ...
- LuoguP3045牛券Cow Coupons
LuoguP3045 [USACO12FEB]牛券Cow Coupons 果然我贪心能力还是太差了 ZR讲过的原题我回来对做法没有一丁点印象 有时候有这样一种题目 每个数有两种不同的价值 你可以选择价 ...
- P3045 [USACO12FEB]牛券Cow Coupons
P3045 [USACO12FEB]牛券Cow Coupons 贪心题.先选中 \(c_i\) 最小的 \(k\) 头牛,如果这样就超过 \(m\) ,直接退出,输出答案.否则考虑把后面的牛依次加入, ...
- [USACO12FEB]牛券Cow Coupons
嘟嘟嘟 这其实是一道贪心题,而不是dp. 首先我们贪心的取有优惠券中价值最小的,并把这些东西都放在优先队列里,然后看[k + 1, n]中,有些东西使用了优惠券减的价钱是否比[1, k]中用了优惠券的 ...
- [Usaco2012 Feb] Cow Coupons
[Usaco2012 Feb] Cow Coupons 一个比较正确的贪心写法(跑得贼慢...) 首先我们二分答案,设当前答案为mid 将序列按照用券之后能省掉的多少排序,那么我们对于两种情况 \(m ...
- P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...
- bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic
P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...
- P3014 [USACO11FEB]牛线Cow Line && 康托展开
康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...
随机推荐
- 数据库优化方案之SQL脚本优化
随着数据库数据越来越大,数据单表存在的数据量也就随之上去了,那么怎么样让我们的脚本查询数据更快呢? 在这个地方我们主要提到两个数据库类型: 1.MSSQL(该数据库我们通过执行计划来查看数据库性能在哪 ...
- Core项目部署到IIS上delete、put谓词不支持
解决方法:在web.config的system.webServer结点下添加如下代码 <modules runAllManagedModulesForAllRequests="true ...
- SPOJ-MobileService--线性DP
题目链接 https://www.luogu.org/problemnew/show/SP703 方法一 分析 很显然可以用一个四维的状态\(f[n][a][b][c]\)表示完成第i个任务时且三人 ...
- c# 将datatable中的数据保存到excel文件中
using System; using System.Collections.Generic; using System.Data; using System.IO; using System.Lin ...
- linux数码管驱动程序和应用程序
- django请求周期和请求信息
Django的请求周期 1,概述 首先我们知道HTTP请求及服务端响应中传输的所有数据都是字符串. 在Django中,当我们访问一个的url时,会通过路由匹配进入相应的html网页. 那么: Djan ...
- (二十五)防编译后函数名通过ida查看到
在使用多个动态库时,两个动态库之间有可能存在相同名称的函数,这样会出现只有第一个函数生效,即所有对该函数的调用都将指向第一个加载的动态库的同名函数中.这样就会很混乱,而且在想改名称也不是很简单的情况下 ...
- 六:MVC数据建模(增删改查)
今天我们来学习mvc增删改查等操作(试着结合前面学习的LINQ方法语法结合查询) 我创建了一个car的数据库,只有一个Cars表 表里面就几个字段 插入了一些数据 想要创建一个ADO.NET实体数据模 ...
- Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)
Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...
- websocket链接报错 ERR_CONNECTION_TIME_OUT
每次打开页面都会报这个错误,链接超时,之前一直是可以的,查看日志之后发现链接数据库失败,修改启动配置文件,修改数据库配置信息,我准备数据库配置信息写死了,然后启动.解决!!!!