Graph.java

package Graph;

import LinearLIst.bag.Bag;
import edu.princeton.cs.algs4.In; public class Graph { private final int V; //顶点数目
private int E; //边的数目
private Bag<Integer>[] adj; //邻接表 /*创建一个包含V个顶点但是不包含边的图*/
public Graph(int V){
this.V=V;
this.E=0;
adj=(Bag<Integer>[]) new Bag[V]; //创建邻接表
for(int v=0;v<V;v++) //将所有链表初始化为空
adj[v]=new Bag<Integer>();
} /*从标准输入流读入一幅图*/
public Graph(In in){
this(in.readInt()); //读取V并将图初始化
int E=in.readInt(); //读取E
for (int i=0;i<E;i++){
int v=in.readInt(); //读取一个顶点
int w=in.readInt(); //读取另一个顶点
addEdge(v,w); //添加一条连接他们的边
}
} /**
* 返回图中顶点(结点)数目
*/
public int V(){
return V;
} /**
*返回图中边的数目
*/
public int E(){
return E;
} /*向图中增加一条边v-w */
public void addEdge(int v,int w){
adj[v].add(w); //将W添加到V的链表中
adj[w].add(v); //将V添加到W的链表中
E++;
} /*和v相邻的所有顶点*/
/*返回的是该点的邻接表*/
public Iterable<Integer> adj(int v){
return adj[v];
} /*下面是最常用的图处理操作*/ /*计算v的度数*/
public static int degree(Graph G,int v){
int degree=0;
for (int w:G.adj(v))
degree++;
return degree;
} /*计算所有顶点的最大度数*/
public static int maxDegree(Graph G){
int max=0;
for (int v=0;v<G.V();v++){
if (degree(G,v)>max)
max=degree(G,v);
}
return max;
} /*计算所有顶点的平均度数*/
public static double avgDegree(Graph G){
return 2*G.E()/G.V();
} /*计算子环的个数*/
public static int numberOfSelfLoops(Graph G){
int count=0;
for (int v=0;v<G.V();v++)
for (int w:G.adj(v))
if (v==w)
count++;
return count/2;
} /*图的邻接表的字符串表示*/
public String toString(){
String s=V+" vertices,"+E+" edges\n"; for (int v=0;v<V;v++){
s+=v+": ";
for (int w:this.adj(v))
s+=w+" ";
s+="\n";
}
return s;
} }

DepthFirstSearch.java

package Graph;

public class DepthFirstSearch {
/*marked数组的索引代表一个顶点,元素值代表该点与起点s是否联通*/
private boolean[] marked; /*与s联通的点的总数*/
/*需要注意的是,这里不是指与s相邻的点的数量*/
/*s与自己是联通的*/
/*即s所在的联通子图中顶点的数量*/
private int count; /**
*
* @param G 一个图
* @param s s代表图中的起点
*/
public DepthFirstSearch(Graph G,int s){
marked=new boolean[G.V()];
dfs(G,s);
} private void dfs(Graph G,int v){
marked[v]=true;
count++;
for(int w:G.adj(v)){
if (!marked[w])
dfs(G,w);
}
} /**
*
* @param w:输入一个顶点
* @return 该顶点是否与起点s联通
*/
public boolean marked(int w){
return marked[w];
} /**
*
* @return 与s联通的点的总数(所在联通子图的节点数)
*/
public int count(){
return count;
}
}

DepthFirstPaths.java

package Graph;

import LinearLIst.stack.Stack;
import edu.princeton.cs.algs4.In; public class DepthFirstPaths {
private boolean[] marked;
private int[] edgeTo;
private final int s; public DepthFirstPaths(Graph G,int s){
marked=new boolean[G.V()];
edgeTo=new int[G.V()];
this.s=s;
dfs(G,s);
} private void dfs(Graph G,int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
}
}
} public boolean hasPathTo(int v) {
return marked[v];
} public Iterable<Integer> pathTo(int v){
if (!hasPathTo(v))
return null;
Stack<Integer> path=new Stack<Integer>();
for(int x=v;x!=s;x=edgeTo[x])
path.push(x); path.push(s);
return path;
}
}

BreadthFirstSearch.java

package Graph;

import LinearLIst.queue.Queue;

public class BreadthFirstSearch {
/*从起点s到达某个顶点的最短路径是否已知*/
private boolean[] marked;
/*到达该顶点的已知路径上的最后一个顶点*/
/*“最短路径的最后一条边”*/
private int[] edgeTo;
/*起点*/
private final int s; public BreadthFirstSearch(Graph G,int s){
/*V()返回的是图中顶点的数目*/
marked=new boolean[G.V()];
edgeTo=new int[G.V()];
this.s=s;
bfs(G,s);
} private void bfs(Graph G,int s){
Queue<Integer> queue=new Queue<Integer>();
marked[s]=true; //标记起点
queue.enqueue(s); //将其加入队列
while(!queue.isEmpty()){
int v=queue.dequeue(); //从队列中删去下一顶点
for (int w:G.adj(v)){
edgeTo[w]=v; //保存最短路径的最后一条边
marked[w]=true; //标记它。因为最短路径已知
queue.enqueue(w); //将它加入到队列中
}
}
} /*判断一个顶点与s是否联通*/
public boolean hasPathTo(int v){
return marked[v];
} /*得到一条从s到v的路径*/
/*确保没有从其它s到v的路径所含的边比这条路径更少*/
/*
public Iterable<Integer> pathTo(int v){
if(!hasPathTo(v))
return null;
Stack<Integer> path=new Stack<Integer>();
for(int x=v;x!=s;x=edgeTo[x])
path.push(x); path.push(s);
return path;
}
*/
}

Graph、DFS、BFS的更多相关文章

  1. B. Kay and Snowflake 解析(思維、DFS、DP、重心)

    Codeforce 685 B. Kay and Snowflake 解析(思維.DFS.DP.重心) 今天我們來看看CF685B 題目連結 題目 給你一棵樹,要求你求出每棵子樹的重心. 前言 完全不 ...

  2. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  3. B. Two Fairs 解析(思維、DFS、組合)

    Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...

  4. D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)

    Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...

  5. DFT、DTFT、DFS、FFT之间的关系

    DFT.DTFT.DFS.FFT.FT.FS之间的关系 FT和FS是研究连续信号的,在数字信号处理中不涉及. 主要是前四种的关系: DFT(Discrete Fourier Transform):离散 ...

  6. 图、dfs、bfs

    graphdfsbfs 1.clone graph2.copy list with random pointer3.topological sorting4.permutations5.subsets ...

  7. 搜索(BFS、DFS、回溯)

    这类题是最简单的了都是一个套路,不像动态规划一类题一个套路,没做过就是不会也极难想出来. 一.BFS 解决的问题:用来初始点解决到指定点的最短路径问题,因为图的每一层上的点到初始点的距离相同.(注意是 ...

  8. BFS、DFS、先序、中序、后序遍历的非递归算法(java)

    一 广度优先遍历(BFS) //广度优先遍历二叉树,借助队列,queue public static void bfs(TreeNode root){ Queue<TreeNode> qu ...

  9. 九度OJ 1091:棋盘游戏 (DP、BFS、DFS、剪枝)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1497 解决:406 题目描述: 有一个6*6的棋盘,每个棋盘上都有一个数值,现在又一个起始位置和终止位置,请找出一个从起始位置到终止位置代 ...

随机推荐

  1. jquery ajax缓存问题解决方法小结

    今天在做一个ajax数据提交功能开始利用get方式一直发现提交的数据都是一样,返回的数据也很久不刷新了,这个我知道是ajax缓存问题,后来在网上整理了一些ajax缓存问题解决方法,下面给大家分享一下. ...

  2. OUC_Summer Training_ DIV2_#11 722

    企鹅很忙系列~(可惜只会做3道题T_T) A - A Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d &am ...

  3. Navicat 12 for MySQL最新版激活(注册机)(转)(亲测有效)

    Navicat 12 for MySQL最新版激活(注册机)(转)(亲测有效) 一.总结 一句话总结: 1.卸载自己机器上面的Navicat,安装下载的包里面的Navicat安装包,不然可能不行 2. ...

  4. 【8583】ISO8583各域段的说明

    [ISO8583各域段的说明] 1,信息类型(message type)定义位图位置:-格式:定长类型:N4描述:数据包的第一部分,定义数据包的类型.数据类型由数据包的发起者设定,应遵循以下要求:数据 ...

  5. 开机自动挂载ISO文件

    开机自动挂载ISO文件 Table of Contents 1. 概述 1.1. 通过fstab 1.2. 通过rc.local 1 概述 开机自动挂载ISO 文件有两种途径 .一种是通过配置fsta ...

  6. [Kaggle] How to kaggle?

    成立于2010年的Kaggle是一个进行数据发掘和预测竞赛的在线平台.与Kaggle合作之后,一家公司可以提供一些数据,进而提出一个问题,Kaggle网站上的计算机科学家和数学家,也就是现在所说的数据 ...

  7. koa2数据请求相关问题解决方案汇总

    前端请求后端数据,难免会遇到如下几个问题: 1⃣️跨域 2⃣️post/get,其中post请求的方式又分为多种 3⃣️后端数据返回格式(上一篇已经有讨论过,这里不再赘述) 用koa2的话,如何解决这 ...

  8. Centos7 搭建Svn+Apache服务器

    Svn客户端搭建 1.yum install subversion 2.查看安装版本 svnserve --version 3.创建SVN版本库目录 mkdir -p /opt/svn 4.创建版本库 ...

  9. PJzhang:python基础进阶的10个疗程-one

    猫宁!!! 课程导学 北京理工大学 国家精品在线开放课程 零基础.大学水平 100行左右的python可以做很多事情 编程是基本技能,体会思维 时间成本和收益的关系 每周5个小时 https://py ...

  10. centos7搭建伪分布式集群

    centos7搭建伪分布式集群 需要 centos7虚拟机一台: jdk-linux安装包一个 hadoop-2.x安装包1个(推荐2.7.x) 一.设置虚拟机网络为静态IP(最好设成静态,为之后编程 ...