Graph.java

package Graph;

import LinearLIst.bag.Bag;
import edu.princeton.cs.algs4.In; public class Graph { private final int V; //顶点数目
private int E; //边的数目
private Bag<Integer>[] adj; //邻接表 /*创建一个包含V个顶点但是不包含边的图*/
public Graph(int V){
this.V=V;
this.E=0;
adj=(Bag<Integer>[]) new Bag[V]; //创建邻接表
for(int v=0;v<V;v++) //将所有链表初始化为空
adj[v]=new Bag<Integer>();
} /*从标准输入流读入一幅图*/
public Graph(In in){
this(in.readInt()); //读取V并将图初始化
int E=in.readInt(); //读取E
for (int i=0;i<E;i++){
int v=in.readInt(); //读取一个顶点
int w=in.readInt(); //读取另一个顶点
addEdge(v,w); //添加一条连接他们的边
}
} /**
* 返回图中顶点(结点)数目
*/
public int V(){
return V;
} /**
*返回图中边的数目
*/
public int E(){
return E;
} /*向图中增加一条边v-w */
public void addEdge(int v,int w){
adj[v].add(w); //将W添加到V的链表中
adj[w].add(v); //将V添加到W的链表中
E++;
} /*和v相邻的所有顶点*/
/*返回的是该点的邻接表*/
public Iterable<Integer> adj(int v){
return adj[v];
} /*下面是最常用的图处理操作*/ /*计算v的度数*/
public static int degree(Graph G,int v){
int degree=0;
for (int w:G.adj(v))
degree++;
return degree;
} /*计算所有顶点的最大度数*/
public static int maxDegree(Graph G){
int max=0;
for (int v=0;v<G.V();v++){
if (degree(G,v)>max)
max=degree(G,v);
}
return max;
} /*计算所有顶点的平均度数*/
public static double avgDegree(Graph G){
return 2*G.E()/G.V();
} /*计算子环的个数*/
public static int numberOfSelfLoops(Graph G){
int count=0;
for (int v=0;v<G.V();v++)
for (int w:G.adj(v))
if (v==w)
count++;
return count/2;
} /*图的邻接表的字符串表示*/
public String toString(){
String s=V+" vertices,"+E+" edges\n"; for (int v=0;v<V;v++){
s+=v+": ";
for (int w:this.adj(v))
s+=w+" ";
s+="\n";
}
return s;
} }

DepthFirstSearch.java

package Graph;

public class DepthFirstSearch {
/*marked数组的索引代表一个顶点,元素值代表该点与起点s是否联通*/
private boolean[] marked; /*与s联通的点的总数*/
/*需要注意的是,这里不是指与s相邻的点的数量*/
/*s与自己是联通的*/
/*即s所在的联通子图中顶点的数量*/
private int count; /**
*
* @param G 一个图
* @param s s代表图中的起点
*/
public DepthFirstSearch(Graph G,int s){
marked=new boolean[G.V()];
dfs(G,s);
} private void dfs(Graph G,int v){
marked[v]=true;
count++;
for(int w:G.adj(v)){
if (!marked[w])
dfs(G,w);
}
} /**
*
* @param w:输入一个顶点
* @return 该顶点是否与起点s联通
*/
public boolean marked(int w){
return marked[w];
} /**
*
* @return 与s联通的点的总数(所在联通子图的节点数)
*/
public int count(){
return count;
}
}

DepthFirstPaths.java

package Graph;

import LinearLIst.stack.Stack;
import edu.princeton.cs.algs4.In; public class DepthFirstPaths {
private boolean[] marked;
private int[] edgeTo;
private final int s; public DepthFirstPaths(Graph G,int s){
marked=new boolean[G.V()];
edgeTo=new int[G.V()];
this.s=s;
dfs(G,s);
} private void dfs(Graph G,int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
}
}
} public boolean hasPathTo(int v) {
return marked[v];
} public Iterable<Integer> pathTo(int v){
if (!hasPathTo(v))
return null;
Stack<Integer> path=new Stack<Integer>();
for(int x=v;x!=s;x=edgeTo[x])
path.push(x); path.push(s);
return path;
}
}

BreadthFirstSearch.java

package Graph;

import LinearLIst.queue.Queue;

public class BreadthFirstSearch {
/*从起点s到达某个顶点的最短路径是否已知*/
private boolean[] marked;
/*到达该顶点的已知路径上的最后一个顶点*/
/*“最短路径的最后一条边”*/
private int[] edgeTo;
/*起点*/
private final int s; public BreadthFirstSearch(Graph G,int s){
/*V()返回的是图中顶点的数目*/
marked=new boolean[G.V()];
edgeTo=new int[G.V()];
this.s=s;
bfs(G,s);
} private void bfs(Graph G,int s){
Queue<Integer> queue=new Queue<Integer>();
marked[s]=true; //标记起点
queue.enqueue(s); //将其加入队列
while(!queue.isEmpty()){
int v=queue.dequeue(); //从队列中删去下一顶点
for (int w:G.adj(v)){
edgeTo[w]=v; //保存最短路径的最后一条边
marked[w]=true; //标记它。因为最短路径已知
queue.enqueue(w); //将它加入到队列中
}
}
} /*判断一个顶点与s是否联通*/
public boolean hasPathTo(int v){
return marked[v];
} /*得到一条从s到v的路径*/
/*确保没有从其它s到v的路径所含的边比这条路径更少*/
/*
public Iterable<Integer> pathTo(int v){
if(!hasPathTo(v))
return null;
Stack<Integer> path=new Stack<Integer>();
for(int x=v;x!=s;x=edgeTo[x])
path.push(x); path.push(s);
return path;
}
*/
}

Graph、DFS、BFS的更多相关文章

  1. B. Kay and Snowflake 解析(思維、DFS、DP、重心)

    Codeforce 685 B. Kay and Snowflake 解析(思維.DFS.DP.重心) 今天我們來看看CF685B 題目連結 題目 給你一棵樹,要求你求出每棵子樹的重心. 前言 完全不 ...

  2. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  3. B. Two Fairs 解析(思維、DFS、組合)

    Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...

  4. D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)

    Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...

  5. DFT、DTFT、DFS、FFT之间的关系

    DFT.DTFT.DFS.FFT.FT.FS之间的关系 FT和FS是研究连续信号的,在数字信号处理中不涉及. 主要是前四种的关系: DFT(Discrete Fourier Transform):离散 ...

  6. 图、dfs、bfs

    graphdfsbfs 1.clone graph2.copy list with random pointer3.topological sorting4.permutations5.subsets ...

  7. 搜索(BFS、DFS、回溯)

    这类题是最简单的了都是一个套路,不像动态规划一类题一个套路,没做过就是不会也极难想出来. 一.BFS 解决的问题:用来初始点解决到指定点的最短路径问题,因为图的每一层上的点到初始点的距离相同.(注意是 ...

  8. BFS、DFS、先序、中序、后序遍历的非递归算法(java)

    一 广度优先遍历(BFS) //广度优先遍历二叉树,借助队列,queue public static void bfs(TreeNode root){ Queue<TreeNode> qu ...

  9. 九度OJ 1091:棋盘游戏 (DP、BFS、DFS、剪枝)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1497 解决:406 题目描述: 有一个6*6的棋盘,每个棋盘上都有一个数值,现在又一个起始位置和终止位置,请找出一个从起始位置到终止位置代 ...

随机推荐

  1. Linux 上的Tomcat配置输入域名直接访问项目

    申请的域名备案通过了,域名是在阿里云上面的买的,一块钱,当初买服务器是买着来玩玩的. 既然申请的域名已经备案通过了,也配置了域名解析 ,服务器上也装了Tomcat,部署了web项目,下面来配置下通过域 ...

  2. mybatis 操作其他数据库的数据表

    配置文件里面配置的数据库只是默认数据库,并不是只能操作默认数据库.(被自己蠢死了,唉) 1. 注解方式 使用BaseMapper方式操作数据表时,在表对应的实体类上的 @table 注解描述表名时加上 ...

  3. Kotlin中单例Singleton模式

    package loaderman.bar class Singlenton private constructor(){ public var value:Singlenton?=null priv ...

  4. Redis之快速入门与应用[教程/总结]

    内容概要 因为项目中用户注册发送验证码,需要学习redis内存数据库,故而下午花了些时间进行初步学习.本博文性质属于对今日redis学习内容的小结.在看本博文前或者看完后,可以反问自己三个问题:Red ...

  5. 中crontab定时器里的"2>&1"含义解释

    */1 * * * * /usr/local/php/bin/php posts.php >> /data/logs/audit_bbsposts.log 2>&1 & ...

  6. 测试ssh转发

    端口转发提供: 1.加密 SSH Client 端至 SSH Server 端之间的通讯数据. 2.突破防火墙的限制完成一些之前无法建立的 TCP 连接. 但是只能转发tcp连接,想要转发UDP,需要 ...

  7. DevOps - 构建本地开发环境

    1 - 构建个人本地开发环境 在个人计算机中搭建一个精简版的.与生产环境基本一致的本地开发环境,既不会占用团队公共环境的资源,也可以缩短等待时间,从整体上提高效率. 本地开发环境的适用场景: 从应用程 ...

  8. mgo连接池

    package main import ( "log" "sync" "time" "gopkg.in/mgo.v2" ...

  9. vscode中如何加eslint检查工具

    代码的质量对开发人员个人的成长以及公司的发展至关重要,所以如何使用把控代码的质量是大家经常思考的问题.除了代码审核之外,代码检查工具成了把控代码质量的第一道门槛,非常好用,可以建立一些团队约定的代码风 ...

  10. 【C/C++开发】C语言 DLL(动态链接库)中申请动态内存释放的问题

    参考:首先,声明一点,凡是使用malloc之类命令动态申请的内存,必须进行释放操作,否则就会发生内存泄漏问题. DLL中申请的内存释放,如果没有做过,很可能会认为是直接在调用程序中释放就可以了,其实不 ...