MySQL的JOIN(四):JOIN优化实践之快速匹配

优化原则:小表驱动大表,被驱动表建立索引有效,驱动表建立索引基本无效果。A left join B :A是驱动表,B是被驱动表;A right join B,B是驱动表,A是被驱动表,A jion B,sql优化器会自动优化,实现小表驱动大表。

这篇博文讲述如何优化扫描速度。我们通过MySQL的JOIN(二):JOIN原理得知了两张表的JOIN操作就是不断从驱动表中取出记录,然后查找出被驱动表中与之匹配的记录并连接。这个过程的实质就是查询操作,想要优化查询操作,建索引是最常用的方式。那索引怎么建呢?我们来讨论下,首先插入测试数据。

    CREATE TABLE t1 (
id INT PRIMARY KEY AUTO_INCREMENT,
type INT
);
SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 110000 |
+----------+
CREATE TABLE t2 (
id INT PRIMARY KEY AUTO_INCREMENT,
type INT
);
SELECT COUNT(*) FROM t2;
+----------+
| COUNT(*) |
+----------+
| 100 |
+----------+

左连接

左连接中,左表是驱动表,右表是被驱动表。想要快速查找被驱动表中匹配的记录,所以我们可以在右表建索引,从而提高连接性能。

    -- 首先两个表都没建索引
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t1 | ALL | NULL | 110428 | NULL |
| 1 | t2 | ALL | NULL | 100 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+
-- 尝试在左表建立索引,改进不大
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+-------+----------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+-------+----------+--------+----------------------------------------------------+
| 1 | t1 | index | idx_type | 110428 | Using index |
| 1 | t2 | ALL | NULL | 100 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+-------+----------+--------+----------------------------------------------------+ -- 尝试在右表建立索引,效果拔群,Using index!!!
DROP INDEX idx_type ON t1;
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 LEFT JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+----------+--------+-------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+------+---------------+----------+--------+-------------+
| 1 | t1 | ALL | NULL | NULL | 110428 | NULL |
| 1 | t2 | ref | idx_type | idx_type | 1 | Using index |
+----+-------+------+---------------+----------+--------+-------------+

右连接

右连接中,右表是驱动表,左表是被驱动表,想要快速查找被驱动表中匹配的记录,所以我们可以在左表建索引,从而提高连接性能。

    DROP INDEX idx_type ON t2;
-- 两个表都没有索引
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t2 | ALL | NULL | 100 | NULL |
| 1 | t1 | ALL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+ -- 在右边建立索引,改进不大
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+
| 1 | t2 | index | NULL | idx_type | 100 | Using index |
| 1 | t1 | ALL | NULL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+-------+---------------+----------+--------+----------------------------------------------------+ -- 尝试在左边建立索引,效果拔群!
DROP INDEX idx_type ON t2;
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 RIGHT JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+--------------+------+-------------+
| id | table | type | possible_keys | ref | rows | Extra |
+----+-------+------+---------------+--------------+------+-------------+
| 1 | t2 | ALL | NULL | NULL | 100 | NULL |
| 1 | t1 | ref | idx_type | test.t2.type | 5 | Using index |
+----+-------+------+---------------+--------------+------+-------------+

内连接

我们知道,MySQL Optimizer会对内连接做优化,不管谁内连接谁,都是用小表驱动大表,所以如果要优化内连接,可以在大表上建立索引,以提高连接性能。

另外注意一点,在小表上建立索引时,MySQL Optimizer会认为用大表驱动小表效率更快,转而用大表驱动小表。

对内连接小表驱动大表的优化策略不清楚的话,可以看MySQL的JOIN(三):JOIN优化实践之内循环的次数

    DROP INDEX idx_type ON t1;
-- 两个表都没有索引,t2驱动t1
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+------+--------+----------------------------------------------------+
| id | table | type | key | rows | Extra |
+----+-------+------+------+--------+----------------------------------------------------+
| 1 | t2 | ALL | NULL | 100 | NULL |
| 1 | t1 | ALL | NULL | 110428 | Using where; Using join buffer (Block Nested Loop) |
+----+-------+------+------+--------+----------------------------------------------------+
-- 在t2表上建立索引,MySQL的Optimizer发现后,用大表驱动了小表
CREATE INDEX idx_type ON t2(type);
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+----------+--------+-------------+
| id | table | type | key | rows | Extra |
+----+-------+------+----------+--------+-------------+
| 1 | t1 | ALL | NULL | 110428 | Using where |
| 1 | t2 | ref | idx_type | 1 | Using index |
+----+-------+------+----------+--------+-------------+ -- 在t1表上建立索引,再加上t1是大表,符合“小表驱动大表”的原则,性能比上面的语句要好
DROP INDEX idx_type ON t2;
CREATE INDEX idx_type ON t1(type);
EXPLAIN SELECT * FROM t1 INNER JOIN t2 ON t1.type=t2.type;
+----+-------+------+---------------+----------+------+-------------+
| id | table | type | possible_keys | key | rows | Extra |
+----+-------+------+---------------+----------+------+-------------+
| 1 | t2 | ALL | NULL | NULL | 100 | Using where |
| 1 | t1 | ref | idx_type | idx_type | 5 | Using index |
+----+-------+------+---------------+----------+------+-------------+

三表连接

上面都是两表连接,三表连接也是一样的,找出驱动表和被驱动表,在被驱动表上建立索引,即可提高连接性能。

总结

想要从快速匹配的角度优化JOIN,首先就是找出谁是驱动表,谁是被驱动表,然后在被驱动表上建立索引即可。

MYSQL join 优化 --JOIN优化实践之快速匹配的更多相关文章

  1. MySQL的JOIN(四):JOIN优化实践之快速匹配

    这篇博文讲述如何优化扫描速度.我们通过MySQL的JOIN(二):JOIN原理得知了两张表的JOIN操作就是不断从驱动表中取出记录,然后查找出被驱动表中与之匹配的记录并连接.这个过程的实质就是查询操作 ...

  2. Mysql中Join用法及优化

    Join的几种类型 笛卡尔积(交叉连接) 如果A表有n条记录,B表有m条记录,笛卡尔积产生的结果就会产生n*m条记录.在MySQL中可以为CROSS JOIN或者省略CROSS即JOIN,或者直接用f ...

  3. 单机数据库优化的一些实践(mysql)

    数据库优化有很多可以讲,按照支撑的数据量来分可以分为两个阶段:单机数据库和分库分表,前者一般可以支撑500W或者10G以内的数据,超过这个值则需要考虑分库分表.另外,一般大企业面试往往会从单机数据库问 ...

  4. 重新学习MySQL数据库12:从实践sql语句优化开始

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/a724888/article/details/79394168 本文不堆叠网上海量的sql优化技巧或 ...

  5. 022:SQL优化--JOIN算法

    目录 一. SQL优化--JOIN算法 1.1. JOIN 写法对比 2. JOIN的成本 3. JOIN算法 3.1. simple nested loop join 3.2. index nest ...

  6. Apache Phoenix的Join操作和优化

    估计Phoenix中支持Joins,对很多使用Hbase的朋友来说,还是比较好的.下面我们就来演示一下. 首先看一下几张表的数据: Orders表: OrderID CustomerID ItemID ...

  7. 35 | join语句怎么优化?

    在上一篇文章中,我和你介绍了 join 语句的两种算法,分别是 Index Nested-Loop Join(NLJ) 和 Block Nested-Loop Join(BNL). 我们发现在使用 N ...

  8. 35 怎么优化join

    35 怎么优化join 上一篇介绍了join的两种算法:nlj和bnl create table t1(id int primary key, a int, b int, index(a)); cre ...

  9. paip.sql索引优化----join 代替子查询法

    paip.sql索引优化----join 代替子查询法 作者Attilax ,  EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.csdn.n ...

随机推荐

  1. Codevs 1213 解的个数(exgcd)

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c=0 p< ...

  2. flask 第六篇 flask内置的session

    Flask中的Session非常的奇怪,他会将你的SessionID存放在客户端的Cookie中,使用起来也非常的奇怪 1. Flask 中 session 是需要 secret_key 的 from ...

  3. C++入门经典-例7.1-对象之访问类成员

    1:建立一个类CPerson. (1)在person.h文件中代码: class CPerson { public: //数据成员 int m_iIndex; ]; short m_shAge; do ...

  4. @configuration和@component之间的区别

    @configuration和@component之间的区别是:@Component注解的范围最广,所有类都可以注解,但是@Configuration注解一般注解在这样的类上:这个类里面有@Value ...

  5. npm转成别的下载地址的插件

    第一种方式 1. 查看当前计算机的下载地址 npm get registry 2. 修改为淘宝npm镜像 npm config set registry http://registry.npm.tao ...

  6. Jmeter测试结果分析(上)

    Jmeter测试结果分析这一篇,我打算分成上下两部分.上篇,主要讲述如何使用jmeter中Assertion对结果进行简单的分类:下篇,主要讲述的是当我们拿到测试结果后,我们应该如何去看待这些测试结果 ...

  7. Linux scp 免密码 传输文件

    Linux scp 免密码 传输文件 背景介绍 最近项目是集群化部署(由 node1,node2,node3 三台 CentOS 7.4 的虚拟机构成). 但是,涉及到跨机器同步文件的问题,想通过写s ...

  8. linux常用命令(8)cat命令

    cat命令的用途是连接文件或标准输入并打印.这个命令常用来显示文件内容,或者将几个文件连接起来显示,或者从标准输入读取内容并显示,它常与重定向符号配合使用. 1 命令格式:cat [选项] [文件]. ...

  9. 如何优雅的给TDatetimePicker控件赋值(Delphi)

    给DatetimePicker赋值时,可以通过界面设置赋值,也可以通过代码赋值. 通常,我们会给表示起始时间的dtp赋值为 00:00:00,给表示结束时间的dtp赋值为23:59:59. 代码如下: ...

  10. Spring:注解(@suppresswarnings,@Valid,初始化静态配置数据,定时任务,@EnableAutoConfiguration)

    1.@suppresswarnings(" ") 2.@Valid @Valid注解用于校验,所属包为:javax.validation.Valid. ① 首先需要在实体类的相应字 ...