[luogu4159 SCOI2009] 迷路(矩阵乘法)
Solution
矩阵乘法新姿势qwq
我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数
那么对于边权很小的时候,我们可以将每个点都拆成若干个点
然后就将边权不为1转化为边权为1了
Code
//By Menteur_Hxy
#include <queue>
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define Re register
#define Ms(a,b) memset(a,(b),sizeof(a))
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
const int N=11,MOD=2009;
int n,T;
char s[N];
struct Matrix{
int da[N*10][N*10];
Matrix() {Ms(da,0);}
void init() {Fo(i,1,n*10)da[i][i]=1;}
Matrix operator * (const Matrix &oth) const {
Matrix res;
Fo(i,1,n*10) Fo(j,1,n*10) Fo(k,1,n*10)
res.da[i][j]+=da[i][k]*oth.da[k][j]%MOD,res.da[i][j]%=MOD;
return res;
}
}mat;
Matrix Qpow(Matrix a,int b) {
Matrix res; res.init();
while(b) {
if(b&1) res=res*a;
a=a*a; b>>=1;
}
return res;
}
inline int id(int x,int y) {return x*n+y-n;}
int main() {
n=read(),T=read();
Fo(i,1,n) {
scanf("%s",s+1);
Fo(j,1,n) mat.da[id(9-s[j]+'0'+1,i)][id(9,j)]++;
}
Fo(i,1,8) Fo(j,1,n) mat.da[id(i+1,j)][id(i,j)]++;
mat=Qpow(mat,T);
printf("%d",mat.da[id(9,1)][id(9,n)]);
return 0;
}
[luogu4159 SCOI2009] 迷路(矩阵乘法)的更多相关文章
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- 【bzoj1297】[SCOI2009]迷路 矩阵乘法
题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...
- LUOGU P4159 [SCOI2009]迷路(矩阵乘法)
传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...
- bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...
- [SCOI2009]迷路(矩阵快速幂) 题解
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化
大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...
- B1297 [SCOI2009]迷路 矩阵
这个题我觉得很有必要写一篇博客.首先,我们需要知道,假如一个邻接矩阵只有0/1构成,那么它自己的n次方就是走n步之后的方案数.但这个题还有2~9咋办呢.我们观察发现,这个题只有10个点,而且边权< ...
随机推荐
- [React Storybook] Get started with Storybook for React
Storybook is a UI component development environment for React, Vue, and Angular. With that, you can ...
- Buy or Build (poj 2784 最小生成树)
Buy or Build Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1348 Accepted: 533 Descr ...
- Fiddler手机抓包工具设置过滤域名
需求:我想用fiddler抓包只抓test.sis.1course.cn; pre.schoolis.cn; sistest02.schoolis.cn;这几个域名下的请求 设置步骤:https:// ...
- (Go)07.strings与strconv的示例
package main import ( "strconv" "fmt" "strings" ) func main() { str := ...
- A. Jeff and Digits(cf)
A. Jeff and Digits time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- 使用filezella服务器配置ftp
使用FileZilla配置FTP站点,可参考以下步骤: 1.打开Filezilla Server服务端: 点击[Edit]->[Users],或者点击如下图标新增用户. 2.添加FTP帐号后,设 ...
- 基于Angular4+ server render(服务端渲染)开发教程
目标: 1.更好的 SEO,方便搜索爬虫抓取页面内容 2.更快的内容到达时间(time-to-content) 影响: 1.用户:比原来更快的看到渲染的页面,提升用户体验 2.开发人员:某些代码可能需 ...
- 数据通讯与网络 第五版第24章 传输层协议-TCP协议部分要点
上一博客记录了UDP协议的关键要点,这部分记录TCP协议的关键要点. 24.3 传输控制协议(TRANSMISSION CONTROL PROTOCOL) TCP(Transmission Contr ...
- Ionic学习记录(一):ionic及cordova安装、创建第一个应用、项目结构
目录: 一.ionic的安装 二.创建第一个应用程序 三.浏览器中预览应用 四.项目结构 五.添加页面 一.ionic的安装 使用Ionic创建和开发应用程序主要通过Ionic命令行实用程序(“CLI ...
- php统计网站 / html页面 浏览访问次数程序
本文章来给大这介绍了php自己写的一些常用的网站统计代码写法,用无数据库的与使用数据库及html静态页面浏览资次数统计代码,大家可进入参考. 实例1 直接使用txt文件进行统计的代码 <?php ...