摘自:http://blog.csdn.net/heyongluoyao8/article/details/48636251

不同于传统的FNNs(Feed-forward Neural Networks,前向反馈神经网络),RNNs引入了定向循环,能够处理那些输入之间前后关联的问题。定向循环结构如下图所示: 

  该tutorial默认读者已经熟悉了基本的神经网络模型。如果不熟悉,可以点击:Implementing A Neural Network From Scratch进行学习。

什么是RNNs

  RNNs的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNNs之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNNs能够对任何长度的序列数据进行处理。但是在实践中,为了降低复杂性往往假设当前的状态只与前面的几个状态相关,下图便是一个典型的RNNs: 

循环神经网络(RNN, Recurrent Neural Networks)——无非引入了环,解决时间序列问题的更多相关文章

  1. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  2. 循环神经网络(RNN, Recurrent Neural Networks)介绍

    原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Netw ...

  3. 《转》循环神经网络(RNN, Recurrent Neural Networks)学习笔记:基础理论

    转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/arti ...

  4. 第十四章——循环神经网络(Recurrent Neural Networks)(第二部分)

    本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks) ...

  5. 第十四章——循环神经网络(Recurrent Neural Networks)(第一部分)

    由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent ...

  6. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  7. 4.5 RNN循环神经网络(recurrent neural network)

     自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  RNN循环神经网络 ...

  8. 转:RNN(Recurrent Neural Networks)

    RNN(Recurrent Neural Networks)公式推导和实现 http://x-algo.cn/index.php/2016/04/25/rnn-recurrent-neural-net ...

  9. RNN(Recurrent Neural Networks)公式推导和实现

    RNN(Recurrent Neural Networks)公式推导和实现 http://x-algo.cn/index.php/2016/04/25/rnn-recurrent-neural-net ...

随机推荐

  1. python--1、入门

    python的创始人为吉多·范罗苏姆(Guido van Rossum). python在2017年统计的所有语言排名中处于第四名,稳步上升状态. python应用领域: WEB开发(Django框架 ...

  2. (转)Vue 爬坑之路(一)—— 使用 vue-cli 搭建项目

    vue-cli 是一个官方发布 vue.js 项目脚手架,使用 vue-cli 可以快速创建 vue 项目,GitHub地址是:https://github.com/vuejs/vue-cli 一. ...

  3. 省市区县的sql语句——区县

    DROP TABLE IF EXISTS `area`; CREATE TABLE `area` (  `id` int(11) NOT NULL AUTO_INCREMENT,  `code` va ...

  4. QT显示框架嵌入Vs控制台工程

      一.一些准备工作: 1.安装Qt for VS 的插件: 安装Qt for VS 的插件 下载地址:http://download.qt.io/official_releases/vsaddin/ ...

  5. 【sqli-labs】 less37 POST- Bypass MYSQL_real_escape_string (POST型绕过MYSQL_real_escape_string的注入)

    POST版本的less36 uname=1&passwd=1%df' or 1#

  6. 【sqli-labs】 less5 GET - Double Injection - Single Quotes - String (双注入GET单引号字符型注入)

    双注入查询可以查看这两篇介绍 https://www.2cto.com/article/201302/190763.html https://www.2cto.com/article/201303/1 ...

  7. 洛谷P1060 开心的金明【dp】

    金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行&qu ...

  8. 9.简单理解ES分布式

    主要知识点:     1.Elasticsearch对复杂分布式机制的透明隐藏特性 2.Elasticsearch的垂直扩容与水平扩容 3.增减或减少节点时的数据rebalance 4.master节 ...

  9. 2.SpringBoot的properties的属性配置详解

    SpringBoot是为了简化Spring应用的创建.运行.调试.部署等一系列问题而诞生的产物,自动装配的特性让我们可以更好的关注业务本身而不是外部的XML配置,我们只需遵循规范,引入相关的依赖就可以 ...

  10. php unlink()函数使用

    最近在写个网站,需要上传图片,如果修改图片,就图片就没有用了,会占用服务器的硬盘资源,所以想到用unlink函数删除旧照片. 问题 : unlink函数只能删除 相对于函数执行文件的相对目录  或  ...