Revenge of Segment Tree

Problem Description
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the
structure is built. A similar data structure is the interval tree.

A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.

---Wikipedia



Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
 
Input
The first line contains a single integer T, indicating the number of test cases. 



Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.



[Technical Specification]

1. 1 <= T <= 10

2. 1 <= N <= 447 000

3. 0 <= Ai <= 1 000 000 000
 
Output
For each test case, output the answer mod 1 000 000 007.
 
Sample Input
2
1
2
3
1 2 3
 
Sample Output
2
20
Hint
For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20.
Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded.
And one more little helpful hint, be careful about the overflow of int.
 
Source

解题思路:

给定n个数的数列,求全部连续区间的和。。最简单的一道题,智商捉急啊,没想到。。

对于当前第i个数(i>=1),我们仅仅要知道有多少个区间包含a[i]就能够了,答案是 i*(n-i+1), i代表第i个数前面有多少个数,包含它自己。(n-i+1)代表第i个数后面有多少个数,包含它自己,然后相乘,代表前面的标号和后边的标号两两配对。

如图:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3JfMTk5MzA4Mjk=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

上图数列取得不恰当,标号和数正好相等。比方数列1,4,2。4。5。图也是和上图一样的。

关键的是标号,而不是详细的数。

代码:

#include <iostream>
#include <stdio.h>
using namespace std;
#define ll long long
const ll mod=1000000007;
ll n; int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%I64d",&n);
ll x;
ll ans=0;
for(ll i=1;i<=n;i++)
{
scanf("%I64d",&x);
ans=(ans+i*(n-i+1)%mod*x%mod)%mod;
}
printf("%I64d\n",ans);
}
return 0;
}

注意输出 I64

[ACM] HDU 5086 Revenge of Segment Tree(全部连续区间的和)的更多相关文章

  1. hdu 5086 Revenge of Segment Tree(BestCoder Round #16)

    Revenge of Segment Tree                                                          Time Limit: 4000/20 ...

  2. HUD 5086 Revenge of Segment Tree(递推)

    http://acm.hdu.edu.cn/showproblem.php?pid=5086 题目大意: 给定一个序列,求这个序列的子序列的和,再求所有子序列总和,这些子序列是连续的.去题目给的第二组 ...

  3. HDU5086——Revenge of Segment Tree(BestCoder Round #16)

    Revenge of Segment Tree Problem DescriptionIn computer science, a segment tree is a tree data struct ...

  4. hdu5086——Revenge of Segment Tree

    Revenge of Segment Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  5. HDU5086:Revenge of Segment Tree(规律题)

    http://acm.hdu.edu.cn/showproblem.php?pid=5086 #include <iostream> #include <stdio.h> #i ...

  6. BestCoder#16 A-Revenge of Segment Tree

    Revenge of Segment Tree Problem Description In computer science, a segment tree is a tree data struc ...

  7. hdu 5086(递推)

    Revenge of Segment Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. HDU 1542/POJ 1151 Atlantis (scaning line + segment tree)

    A template of discretization + scaning line + segment tree. It's easy to understand, but a little di ...

  9. Segment Tree Beats 区间最值问题

    Segment Tree Beats 区间最值问题 线段树一类特殊技巧! 引出:CF671C Ultimate Weirdness of an Array 其实是考试题,改题的时候并不会区间取最值,区 ...

随机推荐

  1. GS运维常用工具及文档

    规范部分   GS产品线性能问题处理流程:http://gsk.inspur.com/File/t-4244 XXX项目性能问题信息收集单-模板:http://gsk.inspur.com/File/ ...

  2. Nmap linux端口扫描神器

    #简介 Nmap亦称为Network Mapper(网络映射)是一个开源并且通用的用于Linux系统/网络管理员的工具.nmap用于探查网络.执行安全扫描.网络核查并且在远程机器上找出开放端口.它可以 ...

  3. HTML学习笔记——DOCTYPE和DTD,标准模式和兼容模式

    主要涉及知识点: HTML与XHTML HTML与XHTML的区别 DOCTYPE与DTD的概念 DTD的分类以及DOCTYPE的声明方式 标准模式(Standard Mode)和兼容模式(Quirc ...

  4. html5与css3入门知识点精炼

    <meta name = "keywords" content="…………"/>(网页搜索时要输入的关键字) <meta name = &qu ...

  5. php全局变量 超全局变量

    php中有许多超全局变量,这意味着它们在一个脚本的全部作用域中都可用.在函数或方法中无需执行 global $variable; 就可以访问它们. 这些超全局变量是: $GLOBALS    引用全局 ...

  6. DOM高级编程

    前言:W3C规定的三类DOM标准接口(换图)Core DOM(核心DOM),适用于各种结构化文档:XML DOM(Java OOP学过),专用于XML文档:HTML DOM,专用于HTML文档,下面了 ...

  7. Arduino 9g舵机操作

    一.接线原理图 一.实物图 三.事例代码 从0转180度,再从180转到0度

  8. layui 下拉框取值

    layui.use('form', function () { var form = layui.form; form.on('select(Status)', function (data) { c ...

  9. Git及Github环境搭建(Windows系统)

    一.github账号注册 1.打开网址https://github.com  注册账号: 二.本地安装Git 1.安装包下载地址:链接:https://pan.baidu.com/s/1smpnJL7 ...

  10. SPOJ 1812 LCS2 - Longest Common Substring II (后缀自动机、状压DP)

    手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自 ...