1.准备工作,按博主的环境为准

Python 3.5

Opencv 3

Tensorflow 1.3.1

Keras 2

cudnn和CUDA,如果你的GPU足够厉害并且支持的话,可以选择安装

那就先安装起来,有兴趣的朋友给我个暗示,好让我有动力写下去,想实现整套的功能还是有点复杂的

第一部分,数据采集,及视频内人物脸

import cv2

save_path = 'your save path'
cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml path')
cap = cv2.VideoCapture('your video path')
i = 0
while True:
ret,frame = cap.read()
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
rect = cascade.detectMultiScale(gray,scaleFactor=1.3,minNeighbors=9,minSize=(50,50),flags = cv2.CASCADE_SCALE_IMAGE)
print ("rect",rect)
if not rect is ():
for x,y,z,w in rect:
roiImg = frame[y:y+w,x:x+z]
cv2.imwrite(save_path+str(i)+'.jpg',roiImg)
cv2.rectangle(frame,(x,y),(x+z,y+w),(0,0,255),2)
i +=1
cv2.imshow('frame',frame)
if cv2.waitKey(1) &0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()

第二部分,国外大神开源代码,用于模型训练

import cv2
import numpy from utils import get_image_paths, load_images, stack_images
from training_data import get_training_data from model import autoencoder_A
from model import autoencoder_B
from model import encoder, decoder_A, decoder_B try:
encoder .load_weights( "models/encoder.h5" )
decoder_A.load_weights( "models/decoder_A.h5" )
decoder_B.load_weights( "models/decoder_B.h5" )
except:
pass def save_model_weights():
encoder .save_weights( "models/encoder.h5" )
decoder_A.save_weights( "models/decoder_A.h5" )
decoder_B.save_weights( "models/decoder_B.h5" )
print( "save model weights" ) images_A = get_image_paths( "data/trump" )
images_B = get_image_paths( "data/cage" )
images_A = load_images( images_A ) / 255.0
images_B = load_images( images_B ) / 255.0 images_A += images_B.mean( axis=(0,1,2) ) - images_A.mean( axis=(0,1,2) ) print( "press 'q' to stop training and save model" ) for epoch in range(1000000):
batch_size = 64
warped_A, target_A = get_training_data( images_A, batch_size )
warped_B, target_B = get_training_data( images_B, batch_size ) loss_A = autoencoder_A.train_on_batch( warped_A, target_A )
loss_B = autoencoder_B.train_on_batch( warped_B, target_B )
print( loss_A, loss_B ) if epoch % 100 == 0:
save_model_weights()
test_A = target_A[0:14]
test_B = target_B[0:14] figure_A = numpy.stack([
test_A,
autoencoder_A.predict( test_A ),
autoencoder_B.predict( test_A ),
], axis=1 )
figure_B = numpy.stack([
test_B,
autoencoder_B.predict( test_B ),
autoencoder_A.predict( test_B ),
], axis=1 ) figure = numpy.concatenate( [ figure_A, figure_B ], axis=0 )
figure = figure.reshape( (4,7) + figure.shape[1:] )
figure = stack_images( figure ) figure = numpy.clip( figure * 255, 0, 255 ).astype('uint8') cv2.imshow( "", figure )
key = cv2.waitKey(1)
if key == ord('q'):
save_model_weights()
exit()

第三部分,国外大神开源代码,人脸输出

import cv2
import numpy
from pathlib import Path from utils import get_image_paths from model import autoencoder_A
from model import autoencoder_B
from model import encoder, decoder_A, decoder_B encoder .load_weights( "models/encoder.h5" )
decoder_A.load_weights( "models/decoder_A.h5" )
decoder_B.load_weights( "models/decoder_B.h5" ) images_A = get_image_paths( "data/trump" )
images_B = get_image_paths( "data/cage" ) def convert_one_image( autoencoder, image ):
assert image.shape == (256,256,3)
crop = slice(48,208)
face = image[crop,crop]
face = cv2.resize( face, (64,64) )
face = numpy.expand_dims( face, 0 )
new_face = autoencoder.predict( face / 255.0 )[0]
new_face = numpy.clip( new_face * 255, 0, 255 ).astype( image.dtype )
new_face = cv2.resize( new_face, (160,160) )
new_image = image.copy()
new_image[crop,crop] = new_face
return new_image output_dir = Path( 'output' )
output_dir.mkdir( parents=True, exist_ok=True ) for fn in images_A:
image = cv2.imread(fn)
new_image = convert_one_image( autoencoder_B, image )
output_file = output_dir / Path(fn).name
cv2.imwrite( str(output_file), new_image )

第四部分,人脸替换

#import necessary libraries
import cv2
import glob as gb
# import numpy #capture video from the webcam
cap = cv2.VideoCapture('your video path')
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('your output video path', fourcc, 20.0, (1920, 1080))
#load the face finder
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml path') #load the face that will be swapped in
img_path = gb.glob("your image path") #start loop
for path in img_path:
face_img = cv2.imread(path)
while True:
ret, img = cap.read() # read image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 3) # find faces
# for all the faces found in the frame
for (x, y, w, h) in faces:
# resize and blend the face to be swapped in
face = cv2.resize(face_img, (h, w), interpolation=cv2.INTER_CUBIC)
face = cv2.addWeighted(img[y:y + h, x:x + w], .5, face, .5, 1)
# swap faces
img[y:y + h, x:x + w] = face
out.write(img)
# show the image
cv2.imshow('img', img)
key = cv2.waitKey(1)
if key == ord('q'):
exit()
cap.release()
cv2.destroyAllWindows()

最后放一张训练一小时后的视频截图,用的是尼古拉斯凯奇的脸

【部分原创】python实现视频内的face swap(换脸)的更多相关文章

  1. 【原创】python实现视频内的face swap(换脸)

    1.准备工作,按博主的环境为准 Python 3.5 Opencv 3 Tensorflow 1.3.1 Keras 2 cudnn和CUDA,如果你的GPU足够厉害并且支持的话,可以选择安装 那就先 ...

  2. [原创]使用python对视频/音频文件进行详细信息采集,并进行去重操作

    [原创]使用python对视频/音频文件进行详细信息采集,并进行去重操作 转载请注明出处 一.关于为什么用pymediainfo以及pymediainfo的安装 使用python对视频/音频文件进行详 ...

  3. Python的常用内置函数介绍

    Python的常用内置函数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.取绝对值(abs) #!/usr/bin/env python #_*_coding:utf-8_ ...

  4. 零基础快速掌握Python系统管理视频课程【猎豹网校】

    点击了解更多Python课程>>> 零基础快速掌握Python系统管理视频课程[猎豹网校] 课程目录 01.第01章 Python简介.mp4 02.第02章 IPython基础.m ...

  5. Python学习教程(Python学习视频_Python学些路线):Day06 函数和模块的使用

    Python学习教程(Python学习视频_Python学些路线):函数和模块的使用 在讲解本章节的内容之前,我们先来研究一道数学题,请说出下面的方程有多少组正整数解. $$x_1 + x_2 + x ...

  6. [Python] 将视频转成ASCII符号形式、生成GIF图片

    一.简要说明 简述:本文主要展示将视频转成ASCII符号形式展示出来,带音频. 运行环境:Win10/Python3.5. 主要模块: PIL.numpy.shutil. [PIL]: 图像处理 [n ...

  7. Python音视频开发:消除抖音短视频Logo和去电视台标

    ☞ ░ 前往老猿Python博文目录 ░ 一.引言 对于带Logo(如抖音Logo.电视台标)的视频,有三种方案进行Logo消除: 直接将对应区域用对应图像替换: 直接将对应区域模糊化: 通过变换将要 ...

  8. python常用数据类型内置方法介绍

    熟练掌握python常用数据类型内置方法是每个初学者必须具备的内功. 下面介绍了python常用的集中数据类型及其方法,点开源代码,其中对主要方法都进行了中文注释. 一.整型 a = 100 a.xx ...

  9. python计算非内置数据类型占用内存

    getsizeof的局限 python非内置数据类型的对象无法用sys.getsizeof()获得真实的大小,例: import networkx as nx import sys G = nx.Gr ...

随机推荐

  1. php 图片局部打马赛克

    php 图片局部打马赛克 原理: 对图片中选定区域的每一像素,添加若干宽度及高度,生成矩型.而每一像素的矩型重叠在一起.就形成了马赛克效果. 本例使用GD库的imagecolorat获取像素颜色,使用 ...

  2. jquery06 jQuery.extend 给jQuery函数添加、继承 静态方法

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  3. js---13 this call apply

    //this:this可以写在js全剧环境中(全局环境中this是window对象),this可以写在函数中,可以写在对象中, function f(){ this.name = "asdf ...

  4. 如何优雅地关闭一个socket

    最近在windows编程时需要考虑到“如何优雅地关闭一个socket”,查阅了一些资料,现将查到的相关资料做个汇编,希望能对后来者有所帮助(比较懒,所以英文资料没有翻译:-)) 1. 关闭Socket ...

  5. 如何使iframe外部的超级链接的页面在iframe中打开

    如何使iframe外部的超级链接的页面在iframe中打开,有以下两种方法: 一.html方法: <iframe name="a1"></iframe> & ...

  6. 41.内存函数实现(memcpy,memset,memmove,memicmp,memchr.memccpy)

    memcpy #include <stdio.h> #include <stdlib.h> #include <memory.h> void * mymemcpy( ...

  7. 网管软件 LANDesk的配置(视频配截图)

    网管软件 LANDesk Server Manager 8.5的配置截图         LANDesk桌面管理套件是应用于大中型企业环境下的计算机管理的最佳解决方案.它提供了从计算机资产管理.软件分 ...

  8. C#开发 —— 基础知识

    C# 用于开发可以运行在 .Net 平台上的应用程序,C# 本身只是一种语言,尽管它是用于生成面向 .Net 环境的代码,但它本身不是 .Net 的一部分 Console.WriteLine 命名空间 ...

  9. Spark scheduler

    触发Spark scheduler的入口是调用者代码中的action操作,如groupByKey,first,take,foreach等操作.这些action操作最终会调用SparkContext.r ...

  10. 体验 Windows 系统 CVM

    添加角色功能: service.msc 设置自动服务,net start telnet