[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习
深度学习
So far this week
- Edge detection
- RANSAC
- SIFT
- K-Means
- Linear classifier
- Mean-shift
- PCA/Eigenfaces
- Image features
Current Research

- Learning hierarchical representations from data
- End-to-end learning: raw inputs to predictions
- can use a small set of simple tools to solve many problems
- has led to rapid progress on many problems
- Inspired by the brain(very loosely!)
Deep learning for different problems
vision tasks
visual recognition


object detection: what and where

object segmentation
image caption
visual question answering
super resolution
image retrieval
style transfer
outside vision tasks
- Machine Translation
- Text Synthesis
- Speech Recognition
- Speech Synthesis
Motivation
Data-driven approach:
- collect a dataset of images and labels
- use machine learning to train an image calssifier
- evaluate the classifier on a withheld set of test images

feature learning
what is feature learning?[^what is feature learning]

deep learning

Supervised learning

linear regression

neural network

neural networks with many layers

Gradient descent
how to find the best weights \(w^T\)

which way is down hill?

gradient descent
fancier rules:
- Momentum
- NAG
- Adagrad
- Adadelta
- Rmsprop


这里以后可以再 看看!
Backpropagation

a two-layer neural network in 25 lines of code
import numpy as np
D,H,N = 8, 64,32
#randomly initialize weights
W1 = np.random.randn(D,H)
W2 = np.random.randn(H,D)
for t in xrange(10000):
x = np.random.randn(N,D)
y = np.sin(x)
s = x.dot(W1)
a = np.maxium(s,0)
y_hat = a.dot(W2)
loss = 0.5*np.sum((y_hat-y)**2.0)
dy_hat = y_hat - y
dW2 = a.T.dot(W2.T)
da = dy_hat.dot(W2.T)
ds = (s > 0)*da
dW1 = x.T.dot(ds)
W1 -= learning_rate*dW1
W2 -= learning_rate*dW2
[^what is feature learning]:
In Machine Learning, feature learning or representation learningis a set of techniques that learn a feature: a transformation of raw data input to a representation that can be effectively exploited in machine learning tasks. This obviates manual feature engineering, which is otherwise necessary, and allows a machine to both learn at a specific task (using the features) and learn the features themselves.
Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data such as images, video, and sensor measurement is usually complex, redundant, and highly variable. Thus, it is necessary to discover useful features or representations from raw data. Traditional hand-crafted features often require expensive human labor and often rely on expert knowledge. Also, they normally do not generalize well. This motivates the design of efficient feature learning techniques, to automate and generalize this.
Feature learning can be divided into two categories: supervised and unsupervised feature learning, analogous to these categories in machine learning generally.
In supervised feature learning, features are learned with labeled input data. Examples include Supervised Neural Networks, Multilayer Perceptron, and (supervised) dictionary Learning.
In unsupervised feature learning, features are learned with unlabeled input data. Examples include dictionary learning, independent component analysis, autoencoders, and various forms of clustering.
[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习的更多相关文章
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 1 课程介绍
课程大纲:http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html 课程定位: 课程交叉: what is (computer) ...
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础
大纲 what is color? The result of interaction between physical light in the environment and our visual ...
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 4 像素和滤波器
Background reading: Forsyth and Ponce, Computer Vision Chapter 7 Image sampling and quantization Typ ...
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 3 线性代数初步
向量和矩阵 什么是矩阵/向量? Vectors and matrix are just collections of ordered numbers that represent something: ...
- Computer Vision: Algorithms and ApplicationsのImage processing
实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...
- Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...
- Sony深度学习框架 - Neural Network Console - 教程(1)- 原来深度学习可以如此简单
“什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想 ...
- 百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。
百度为何开源深度机器学习平台? 有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举. 5月20日,百度在github上开源了其 ...
- Python入门学习笔记4:他人的博客及他人的学习思路
看其他人的学习笔记,可以保证自己不走弯路.并且一举两得,即学知识又学方法! 廖雪峰:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958 ...
随机推荐
- Project Euler 45 Triangular, pentagonal, and hexagonal( 二分 + 函数指针 )
题意: 三角形数.五边形数和六角形数分别由以下公式给出: 三角形数 Tn=n(n+1)/2 1, 3, 6, 10, 15, - 五边形数 Pn=n(3n−1)/2 1, 5, 12, 2 ...
- 使用Word2016直接发布博客
使用Word2016直接发布博客
- spring data JPA使用quartz定时器的具体实现
第一步.在pom.xml中的配置 <!--quartz--> <dependency> <groupId>org.quartz-scheduler</grou ...
- 加速 MySQL 导入导出的方法
http://www.21andy.com/new/20100917/1952.html MySQL导出的SQL语句在导入时有可能会非常非常慢,在处理百万级数据的时候,可能导入要花几小时.在导出时合理 ...
- java import跨包引用类理解
当前类要用其他类时,import具体包路径+.+具体的类 import引入的是被引用类的class文件,所以当我们build path第三方jar包时, 要用他们的类,要把jar包add to bui ...
- HTML5开发移动web应用——Sencha Touch篇(8)
DataView是Sencha Touch中最重要的组件,用于数据的可视化.数据可视化的重要性不言而喻,能够讲不论什么数据以形象的方式展示给用户. 眼下,怎样更好地可视化是很多公司或框架都在追求的. ...
- Android图文混排-实现EditText图文混合插入上传
前段时间做了一个Android会议管理系统,项目需求涉及到EditText的图文混排,如图: 在上图的"会议详情"中.须要支持文本和图片的混合插入,下图演示输入的演示样例: 当会议 ...
- mysqli数据库操作简单实例
mysqli数据库操作简单实例 代码 结果
- asf
这些日子我一直在写一个实时操作系统内核,已有小成了,等写完我会全部公开,希望能 够为国内IT的发展尽自己一份微薄的力量.最近看到很多学生朋友和我当年一样没有方向 ,所以把我的经历写出来与大家共勉, ...
- C# 遍历文件夹及子目录下所有图片.
要求:取指定目录下面的所有图片,以表格的型式展示并显示该图片的相对路径. 服务端代码: public partial class ViewIcon : System.Web.UI.Page { JAr ...