深度学习

So far this week

  • Edge detection
  • RANSAC
  • SIFT
  • K-Means
  • Linear classifier
  • Mean-shift
  • PCA/Eigenfaces
  • Image features

Current Research

  • Learning hierarchical representations from data
  • End-to-end learning: raw inputs to predictions
  • can use a small set of simple tools to solve many problems
  • has led to rapid progress on many problems
  • Inspired by the brain(very loosely!)

Deep learning for different problems

vision tasks

  • visual recognition



  • object detection: what and where

  • object segmentation

  • image caption

  • visual question answering

  • super resolution

  • image retrieval

  • style transfer

outside vision tasks

  • Machine Translation
  • Text Synthesis
  • Speech Recognition
  • Speech Synthesis

Motivation

Data-driven approach:

  1. collect a dataset of images and labels
  2. use machine learning to train an image calssifier
  3. evaluate the classifier on a withheld set of test images

feature learning

what is feature learning?[^what is feature learning]

deep learning

Supervised learning

linear regression

neural network

neural networks with many layers

Gradient descent

how to find the best weights \(w^T\)

which way is down hill?

gradient descent

fancier rules:

  • Momentum
  • NAG
  • Adagrad
  • Adadelta
  • Rmsprop



这里以后可以再 看看!

Backpropagation

a two-layer neural network in 25 lines of code

import numpy as np
D,H,N = 8, 64,32
#randomly initialize weights
W1 = np.random.randn(D,H)
W2 = np.random.randn(H,D)
for t in xrange(10000):
x = np.random.randn(N,D)
y = np.sin(x)
s = x.dot(W1)
a = np.maxium(s,0)
y_hat = a.dot(W2)
loss = 0.5*np.sum((y_hat-y)**2.0)
dy_hat = y_hat - y
dW2 = a.T.dot(W2.T)
da = dy_hat.dot(W2.T)
ds = (s > 0)*da
dW1 = x.T.dot(ds)
W1 -= learning_rate*dW1
W2 -= learning_rate*dW2

[^what is feature learning]:

In Machine Learning, feature learning or representation learningis a set of techniques that learn a feature: a transformation of raw data input to a representation that can be effectively exploited in machine learning tasks. This obviates manual feature engineering, which is otherwise necessary, and allows a machine to both learn at a specific task (using the features) and learn the features themselves.

Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data such as images, video, and sensor measurement is usually complex, redundant, and highly variable. Thus, it is necessary to discover useful features or representations from raw data. Traditional hand-crafted features often require expensive human labor and often rely on expert knowledge. Also, they normally do not generalize well. This motivates the design of efficient feature learning techniques, to automate and generalize this.

Feature learning can be divided into two categories: supervised and unsupervised feature learning, analogous to these categories in machine learning generally.

In supervised feature learning, features are learned with labeled input data. Examples include Supervised Neural Networks, Multilayer Perceptron, and (supervised) dictionary Learning.

In unsupervised feature learning, features are learned with unlabeled input data. Examples include dictionary learning, independent component analysis, autoencoders, and various forms of clustering.

[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习的更多相关文章

  1. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 1 课程介绍

    课程大纲:http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html 课程定位: 课程交叉: what is (computer) ...

  2. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础

    大纲 what is color? The result of interaction between physical light in the environment and our visual ...

  3. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 4 像素和滤波器

    Background reading: Forsyth and Ponce, Computer Vision Chapter 7 Image sampling and quantization Typ ...

  4. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 3 线性代数初步

    向量和矩阵 什么是矩阵/向量? Vectors and matrix are just collections of ordered numbers that represent something: ...

  5. Computer Vision: Algorithms and ApplicationsのImage processing

    实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...

  6. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  7. Sony深度学习框架 - Neural Network Console - 教程(1)- 原来深度学习可以如此简单

    “什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想 ...

  8. 百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。

    百度为何开源深度机器学习平台?   有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举.   5月20日,百度在github上开源了其 ...

  9. Python入门学习笔记4:他人的博客及他人的学习思路

    看其他人的学习笔记,可以保证自己不走弯路.并且一举两得,即学知识又学方法! 廖雪峰:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958 ...

随机推荐

  1. [CodeForces]986A Fair

    大意:给一张图,每个图上有一个数,问以每个点为源点,经过的点包含k种数字的最小距离. 显然跑最短路会T,但我们注意到边权一定.某次学校考试就是类似题,可以bfs做,复杂度O(n),每种货物做一次,复杂 ...

  2. iptables防火墙和selinux

    iptables 存在以下两种方式: 一.service方式 查看防火墙状态: [root@centos6 ~]# service iptables status iptables:未运行防火墙 开启 ...

  3. [LeetCode] 75. 颜色分类(荷兰国旗)

    class Solution { public: void sortColors(vector<int>& nums) { ,current=,end=nums.size()-; ...

  4. sax解析xml文件的DefaultHandler处理类

    一千年的时光,我无数次掀起岁月的帷幔,只为和你,在某一个平静如水的日子相遇,然后相识,倾情一生,缱绻一世,好美的散文,好吧,我情愿把这个“你”当作android:),使用sax解析xml文件是我见到过 ...

  5. maven tomcat 热部署

    一.什么是热部署 就是在 tomcat 启动的时候进行部署 二.配置 tomcat 1.需要修改 tomcat 的 conf/tomcat-users.xml 配置文件.添加用户名.密码.权限. &l ...

  6. (5)全局异常捕捉【从零开始学Spring Boot】

    在一个项目中的异常我们我们都会统一进行处理的,那么如何进行统一进行处理呢? 新建一个类GlobalDefaultExceptionHandler, 在class注解上@ControllerAdvice ...

  7. Ubuntu14.04 安装CUDA7.5 + Caffe + cuDNN

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50961542 花了一天时间,在电脑上安 ...

  8. Hadoop集群(第11期)_常用MySQL数据库命令

    1.系统管理 1.1 连接MySQL 格式: mysql -h主机地址 -u用户名 -p用户密码 举例: 例1:连接到本机上的MySQL. 首先在打开DOS窗口,然后进入目录 mysqlbin,再键入 ...

  9. [Linux]第三部分-学习Shell和Shell脚本

    vim 高级的 vii o a 进入编辑模式 esc进入一般模式:wq离开alias vi='vim' 使用vim打开viv块选择 y复制反白,d删除反白在vi中打开一个文件后,可以使用 sp fil ...

  10. [SharePoint][SharePoint Designer 入门经典]Chapter12 高级工作流

    1.使用Visio2010创建工作流标志 2.使用Visio Graphic服务可视化一个运行的工作流 3.使用InfoPath2010修饰工作流表单 4.导出可重用的工作流