Spark SQL - 对大规模的结构化数据进行批处理和流式处理

大体翻译自:https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-sql.html

如同一般的 Spark 处理,Spark SQL 本质上也是大规模的基于内存的分布式计算。

Spark SQL 和 RDD 计算模型最大的区别在于数据处理的框架不同。Spark SQL 可以通过多种不同的方式对结构化的数据和半结构化的数据进行处理。它既可以使用 SQL , HiveQL 这种结构化查询查询语言,也可以使用类 SQL,声明式,类型安全的Dataset API 进行查询,这种被称为 Structured Query DSL

Note:可以通过 Schema 对结构化和半结构化的数据进行描述。

Spark SQL 支持 批处理(Batch) 和流式处理(Struct streaming) 两种处理方式。

Note:本质上,结构化查询都会自动编译为相应的 RDD 操作。

无论使用什么样的查询方式,所有的查询都会转化为一个由 Catalyst expressions 组成的树,在这个过程中会对不断的对查询进行优化。

在 Spark 2.0 以后, Spark SQL 已经成为了 Spark 计算平台最主要的接口, 它通过更高层次的抽象封装了RDD,方便用户通过 SQL 处理数据。


// Define the schema using a case class
case class Person(name: String, age: Int) // you could read people from a CSV file
// It's been a while since you saw RDDs, hasn't it?
// Excuse me for bringing you the old past.
import org.apache.spark.rdd.RDD
val peopleRDD: RDD[Person] = sc.parallelize(Seq(Person("Jacek", 10))) // Convert RDD[Person] to Dataset[Person] and run a query // Automatic schema inferrence from existing RDDs
scala> val people = peopleRDD.toDS
people: org.apache.spark.sql.Dataset[Person] = [name: string, age: int] // Query for teenagers using Scala Query DSL
scala> val teenagers = people.where('age >= 10).where('age <= 19).select('name).as[String]
teenagers: org.apache.spark.sql.Dataset[String] = [name: string] scala> teenagers.show
+-----+
| name|
+-----+
|Jacek|
+-----+ // You could however want to use good ol' SQL, couldn't you? // 1. Register people Dataset as a temporary view in Catalog
people.createOrReplaceTempView("people") // 2. Run SQL query
val teenagers = sql("SELECT * FROM people WHERE age >= 10 AND age <= 19")
scala> teenagers.show
+-----+---+
| name|age|
+-----+---+
|Jacek| 10|
+-----+---+

通过启动 Hive 支持 (enableHiveSupport),用户可以 HiveQL 对 Hive 中的数据进行处理。

sql("CREATE OR REPLACE TEMPORARY VIEW v1 (key INT, value STRING) USING csv OPTIONS ('path'='people.csv', 'header'='true')")

// Queries are expressed in HiveQL
sql("FROM v1").show scala> sql("desc EXTENDED v1").show(false)
+----------+---------+-------+
|col_name |data_type|comment|
+----------+---------+-------+
|# col_name|data_type|comment|
|key |int |null |
|value |string |null |
+----------+---------+-------+

和其它的数据库一样, Spark SQL 通过 Logical Query Plan Optimizer, code generation , Tungsten execution engine 来这些措施进行优化。

Spark SQL 引入了一种抽象的表格式的数据结构 Dataset。 通过 Dataset, Spark SQL 可以更加方便、快速的处理大批量的结构化数据。

Note:Spark SQL 借助Apache Drill 直接在一些数据文件上进行查询

下面的片段展示了如何读取JSON文件,然后将一种一部分数据保存为CSV文件。

spark.read
.format("json")
.load("input-json")
.select("name", "score")
.where($"score" > 15)
.write
.format("csv")
.save("output-csv")

DataSet 是 Spark SQL 中最核心的抽象。他表示了一批已知 schema 的结构化数据。这些数据可以可以保存在JVM 堆外的内存中,并且变为列压缩的二进制串,来增加计算的速度,减少内存的使用和GC。

Spark SQL 支持 predicate pushdown 对 DataSet 的性能进行优化,并且可以在运行时生成优化代码。

Spark SQL 包含了以下几种 API:

  1. Dataset API
  2. Structred Streaming API
  3. SQL
  4. JDBC/ODBC

Spark SQL 通过 DataFrameReader 和 DataFrameWrite 这两个统一的接口来访问 HDFS 等存储系统。

Spark SQL 定义了集中不同类型的函数:

  • 标准函数 和 UDF。
  • 基本的集合函数。
  • 窗口聚合函数。

如果你已经将一个 CSV 加载到一个 dataframe 中了,那你可以通过将 dataframe 注册为 table, 然后使用 SQL 进行查询。

// Example 1
val df = Seq(1 -> 2).toDF("i", "j")
val query = df.groupBy('i)
.agg(max('j).as("aggOrdering"))
.orderBy(sum('j))
.as[(Int, Int)]
query.collect contains (1, 2) // true // Example 2
val df = Seq((1, 1), (-1, 1)).toDF("key", "value")
df.createOrReplaceTempView("src")
scala> sql("SELECT IF(a > 0, a, 0) FROM (SELECT key a FROM src) temp").show
+-------------------+
|(IF((a > 0), a, 0))|
+-------------------+
| 1|
| 0|
+-------------------+
更多参考:
  1. Spark SQL home
  2. Spark’s Role in the Big Data Ecosystem - Matei Zaharia
  3. Introducing Apache Spark 2.0

Spark SQL - 对大规模的结构化数据进行批处理和流式处理的更多相关文章

  1. Spark如何与深度学习框架协作,处理非结构化数据

    随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术对非结构化数据(如图片.音频.文本)进行大数据处理的业务场景越来越多.本文会介绍Spark如何与深度学习框架进行协同工作,在大数 ...

  2. Spark读取结构化数据

    读取结构化数据 Spark可以从本地CSV,HDFS以及Hive读取结构化数据,直接解析为DataFrame,进行后续分析. 读取本地CSV 需要指定一些选项,比如留header,比如指定delimi ...

  3. Salesforce开源TransmogrifAI:用于结构化数据的端到端AutoML库

    AutoML 即通过自动化的机器学习实现人工智能模型的快速构建,它可以简化机器学习流程,方便更多人利用人工智能技术.近日,软件行业巨头 Salesforce 开源了其 AutoML 库 Transmo ...

  4. Bigtable:结构化数据的分布式存储系统

    Bigtable最初是谷歌设计用来存储大规模结构化数据的分布式系统,其可以在数以千计的商用服务器上存储高达PB级别的数据量.开源社区根据Bigtable的设计思路开发了HBase.其优势在于提供了高效 ...

  5. MySQL 5.7:非结构化数据存储的新选择

    本文转载自:http://www.innomysql.net/article/23959.html (只作转载, 不代表本站和博主同意文中观点或证实文中信息) 工作10余年,没有一个版本能像MySQL ...

  6. Solr系列四:Solr(solrj 、索引API 、 结构化数据导入)

    一.SolrJ介绍 1. SolrJ是什么? Solr提供的用于JAVA应用中访问solr服务API的客户端jar.在我们的应用中引入solrj: <dependency> <gro ...

  7. Bigtable:一个分布式的结构化数据存储系统

    Bigtable:一个分布式的结构化数据存储系统 摘要 Bigtable是一个管理结构化数据的分布式存储系统,它被设计用来处理海量数据:分布在数千台通用服务器上的PB级的数据.Google的很多项目将 ...

  8. (四)DIH导入结构化数据

    (四)DIH导入结构化数据 目前大多数的应用程序将数据存储在关系数据库(如oracle.sql server .mysql等).xml文件中.对这样的数据进行搜索是很常见的应用.所谓的DataImpo ...

  9. WordPress插件--WP BaiDu Submit结构化数据插件又快又全的向百度提交网页

    一.WP BaiDu Submit 简介 WP BaiDu Submit帮助具有百度站长平台链接提交权限的用户自动提交最新文章,以保证新链接可以及时被百度收录. 安装WP BaiDu Submit后, ...

随机推荐

  1. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  2. POJ 2446 匈牙利算法

    题意: 思路: 二分图匹配... // by SiriusRen #include <cmath> #include <cstdio> #include <cstring ...

  3. 利用IOC—— Castle进行对象映射,以及结合Nhibernate访问数据库

    相信很多人对IOC这个概念并不陌生,简而言之其核心就是利用反射来创建对象来实现解耦. 具体这么做解耦的好处是什么,因为鄙人做的项目还不多,所以还没体会到. 但好的项目大概是这样的 就是实现“高内聚,低 ...

  4. Android Studio 一些注意事项(自用,不定期更新)

    1,Android Studio 版本的选择 写这篇的时候,官方版本已经到了 v3.2.0,而我习惯使用的版本是 v2.3.1,因为这个版本有自带sdk的安装版,比较方便, 同时,v2.3.1 新建项 ...

  5. 移动端 | Vue.js对比微信小程序基础语法

    (1)vue 自定义组件与父组件的通信,props:[abb],可以看成自组建的一个自定义属性 (2)vue 模版语法{{}} 只能是在DOM中插入,<div>{{acc}}</di ...

  6. usaco No Change, 2013 Nov 不找零(二分查找+状压dp)

    Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci 元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身 ...

  7. json字符串与json对象的相互转换

    什么是 JSON ? JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation) JSON 是轻量级的文本数据交换格式 JSON 独立于语言 * JSO ...

  8. LIst和map的遍历

    1. public static void main(String[] args) { // ArrayList类实现一个可增长的动态数组 List<String> list = new ...

  9. python爬虫:爬取医药数据库drugbank

    这个是帮朋友做的,难点就是他们有一个反爬虫机制,用request一直不行,后面我就用selenium直接把网页copy下来,然后再来解析本地的html文件,就木有问题啦. 现在看来,写得有点傻,多包涵 ...

  10. Linux下安装桌面

    1.         安装之前先测试是否有桌面 2.         建立yum源文件   3.         挂载好光盘(/rhel自己创建)   4.         使用yum list 查看 ...