Perfect Rectangle(完美矩形)
我们有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域。
每个矩形用左下角的点和右上角的点的坐标来表示。例如, 一个单位正方形可以表示为 [1,1,2,2]。 ( 左下角的点的坐标为 (1, 1) 以及右上角的点的坐标为 (2, 2) )。

示例 1:
rectangles = [
[1,1,3,3],
[3,1,4,2],
[3,2,4,4],
[1,3,2,4],
[2,3,3,4]
] 返回 true。5个矩形一起可以精确地覆盖一个矩形区域。

示例 2:
rectangles = [
[1,1,2,3],
[1,3,2,4],
[3,1,4,2],
[3,2,4,4]
] 返回 false。两个矩形之间有间隔,无法覆盖成一个矩形。

示例 3:
rectangles = [
[1,1,3,3],
[3,1,4,2],
[1,3,2,4],
[3,2,4,4]
] 返回 false。图形顶端留有间隔,无法覆盖成一个矩形。

示例 4:
rectangles = [
[1,1,3,3],
[3,1,4,2],
[1,3,2,4],
[2,2,4,4]
] 返回 false。因为中间有相交区域,虽然形成了矩形,但不是精确覆盖。 这道题我在写前两个解法的时候还没ac通过,但是已经忍不住要写了。思路还是很清晰的,遍历矩形,算有没有重合,面积累加,最后看看总面积是不是最大范围的覆盖的矩形的面积。
第一遍暴力解法:
class Solution {
public:
bool Cover(vector<int>& a, vector<int>&b)
{
if (min(a[], a[]) >= max(b[], b[]) || max(a[], a[]) <= min(b[], b[])
|| min(a[], a[]) >= max(b[], b[]) || max(a[], a[]) <= min(b[], b[]))
{
return false;
}
return true;
}
bool isRectangleCover(vector<vector<int>>& rectangles) {
int minx, miny, maxx, maxy;
minx = miny = INT_MAX;
maxx = maxy = INT_MIN;
long long int sum = ;
for (int i = ; i < rectangles.size();i++)
{
for (int r = ; r < i;r++)
{
if (Cover(rectangles[i], rectangles[r]))
{
return false;
}
}
minx = min(minx, min(rectangles[i][], rectangles[i][]));
miny = min(miny, min(rectangles[i][], rectangles[i][]));
maxx = max(maxx, max(rectangles[i][], rectangles[i][]));
maxy = max(maxy, max(rectangles[i][], rectangles[i][]));
sum += abs((rectangles[i][] - rectangles[i][])*(rectangles[i][] - rectangles[i][]));
}
return sum == (maxx - minx)*(maxy - miny);
}
};
果不其然挂了,测试最后两组都是3w+的数据量
第二遍:四叉树解法
class QuadNode
{
public:
enum{
quad_1,//四个象限
quad_2,
quad_3,
quad_4,
quad_count,
};
vector<vector<int>>* data;
QuadNode* Children[quad_count];//孩子指针,数组大小为8
QuadNode* Parent;//父节点指针
typedef std::list<int> RecList;
typedef std::list<int>::iterator RecListIter;
RecList rectlist;//携带的参数 实体列表
int quad;//在父节点中的象限
int deep;//自己所在的层索引
int minx,miny;
int maxx,maxy;
QuadNode(vector<vector<int>>* data, int x1, int x2, int y1, int y2, int dp, int qd)
{
minx = x1;
maxx = x2;
miny = y1;
maxy = y2;
deep = dp;
quad = qd;
Parent = NULL;
this->data = data;
memset(Children, , sizeof(Children));
}
~QuadNode()
{
for (int i = ; i < quad_count; i++)
{
if (Children[i])
{
delete Children[i];
Children[i] = NULL;
}
}
rectlist.clear();
}
QuadNode* GetDeepest(int index)
{
if (deep > )
{
//4个孩子都要创建
for (int r = ; r < QuadNode::quad_count; r++)
{
if (!Children[r])
{
int ix = r == QuadNode::quad_1 || r == QuadNode::quad_3 ? minx : (minx + maxx) / ;
int ax = r == QuadNode::quad_1 || r == QuadNode::quad_3 ? (minx + maxx) / : maxx; int iy = r == QuadNode::quad_1 || r == QuadNode::quad_2 ? miny : (miny + maxy) / ;
int ay = r == QuadNode::quad_1 || r == QuadNode::quad_2 ? (miny + maxy) / : maxy;
QuadNode *node = new QuadNode(data, ix, ax, iy, ay, deep - , r);
node->Parent = this;
Children[r] = node;
}
if (Children[r]->CheckInRange(index))
{
return Children[r]->GetDeepest(index);
}
}
}
return this;
}
bool CheckInRange(int index)
{
if ((*data)[index][] >= minx && (*data)[index][] <= maxx && (*data)[index][] >= miny && (*data)[index][] <= maxy)
{
return true;
}
return false;
}
bool CheckCover(int index)
{
QuadNode* n = GetDeepest(index);
QuadNode* parent = n->Parent;
while (parent)
{
if (parent->CheckWithTrianglelist(index))
{
return true;
}
parent = parent->Parent;
} if (n->CollisionCheck(index))
return true;
n->rectlist.push_back(index);
return false;
}
bool CollisionCheck(int index)
{
return CheckWithTrianglelist(index) || CheckWithSubSpace(index);
}
bool CheckWithTrianglelist(int index)
{
RecListIter itr = rectlist.begin();
while (itr != rectlist.end())
{
int id = *itr;
if (Cover((*data)[id], (*data)[index]))
{
return true;
}
itr++;
}
return false;
} bool CheckWithSubSpace(int index)
{
bool collision = false;
for (int i = ; i < quad_count && Children[i]; i++)
{
int vec[] = { minx, miny, maxx, maxy };
vector<int> para(vec, vec + );
if (Cover((*data)[index], para))
{
collision |= Children[i]->CollisionCheck(index);
}
if (collision)
{
return true;
}
}
return false;
} bool Cover(vector<int>& a, vector<int>&b)
{
if (min(a[], a[]) >= max(b[], b[]) || max(a[], a[]) <= min(b[], b[])
|| min(a[], a[]) >= max(b[], b[]) || max(a[], a[]) <= min(b[], b[]))
{
return false;
}
return true;
}
};
class Solution {
public:
int GetMax2Power(int xmax, int ymax, int& lg)
{
int max = xmax;
if (ymax > max)
max = ymax;
if ((max & (max - )) == )
{
double L = log(max*1.0) / log(2.0);
lg = (int)L + ;
return max;
}
else
{
double L = log(max*1.0) / log(2.0);
lg = (int)L + ;
return (int)pow( * 1.0, lg - 1.0);
}
}
bool isRectangleCover(vector<vector<int>>& rectangles) {
int minx, miny, maxx, maxy;
minx = miny = INT_MAX;
maxx = maxy = INT_MIN;
long long int sum = ;
for (int i = ; i < rectangles.size(); i++)
{
minx = min(minx, min(rectangles[i][], rectangles[i][]));
miny = min(miny, min(rectangles[i][], rectangles[i][]));
maxx = max(maxx, max(rectangles[i][], rectangles[i][]));
maxy = max(maxy, max(rectangles[i][], rectangles[i][]));
}
int mx = max(abs(maxx), abs(minx));
int my = max(abs(maxy), abs(miny));
int range, lg;
range = GetMax2Power(mx, my, lg);
//四叉树
QuadNode* root = new QuadNode(&rectangles, -range, range, -range, range, lg, ); for (int i = ; i < rectangles.size();i++)
{
if (root->CheckCover(i))
{
return false;
}
sum += abs((rectangles[i][] - rectangles[i][])*(rectangles[i][] - rectangles[i][]));
}
delete root;
return sum == (maxx - minx)*(maxy - miny);
}
};
以为没什么问题了,跑一下又超时了,真是恶心的一p啊。拿测试数据跑一跑发现,几乎95%的数据都在边界上,四叉树无法往下细化。写个四叉树容易吗???
只能硬着头皮继续想了,果然没有想到。参考了下别人的歪门邪道,感觉前面写的东西都白瞎了。有时候解决问题,还得靠技巧。
解法三:所有的矩形顶点,有且只有四个边角是只出现一次,剩下的顶点要么两次,要么四次
long long int getHash(int x, int y)
{
long long int t = << ;
return x*t + y;
}
bool isRectangleCover(vector<vector<int>>& rectangles) {
int minx, miny, maxx, maxy;
minx = miny = INT_MAX;
maxx = maxy = INT_MIN;
long long int sum = ;
unordered_set<long long int> st;
for (int i = ; i < rectangles.size(); i++)
{
minx = min(minx, min(rectangles[i][], rectangles[i][]));
miny = min(miny, min(rectangles[i][], rectangles[i][]));
maxx = max(maxx, max(rectangles[i][], rectangles[i][]));
maxy = max(maxy, max(rectangles[i][], rectangles[i][]));
sum += abs((rectangles[i][] - rectangles[i][])*(rectangles[i][] - rectangles[i][]));
long long int lu = getHash(rectangles[i][], rectangles[i][]);
long long int ld = getHash(rectangles[i][], rectangles[i][]);
long long int ru = getHash(rectangles[i][], rectangles[i][]);
long long int rd = getHash(rectangles[i][], rectangles[i][]);
if (st.count(lu) == ) st.insert(lu);
else st.erase(lu);
if (st.count(ld) == ) st.insert(ld);
else st.erase(ld);
if (st.count(ru) == ) st.insert(ru);
else st.erase(ru);
if (st.count(rd) == ) st.insert(rd);
else st.erase(rd);
} return sum == (maxx - minx)*(maxy - miny) && st.size() ==
&& st.count(getHash(minx, miny)) ==
&& st.count(getHash(minx, maxy)) ==
&& st.count(getHash(maxx, miny)) ==
&& st.count(getHash(maxx, maxy)) == ;
}

吐血!
Perfect Rectangle(完美矩形)的更多相关文章
- [LeetCode] Perfect Rectangle 完美矩形
Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...
- 391 Perfect Rectangle 完美矩形
有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域.每个矩形用左下角的点和右上角的点的坐标来表示.例如, 一个单位正方形可以表示为 [1,1,2,2]. ( ...
- Leetcode 391.完美矩形
完美矩形 我们有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域. 每个矩形用左下角的点和右上角的点的坐标来表示.例如, 一个单位正方形可以表示为 [1,1 ...
- Java实现 LeetCode 391 完美矩形
391. 完美矩形 我们有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域. 每个矩形用左下角的点和右上角的点的坐标来表示.例如, 一个单位正方形可以表示为 ...
- [Swift]LeetCode391. 完美矩形 | Perfect Rectangle
Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...
- [LeetCode] Rectangle Area 矩形面积
Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...
- [LeetCode] Maximal Rectangle 最大矩形
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...
- Perfect Scrollbar – 完美的 jQuery 滚动条插件
Perfect Scrollbar 是一个很小的,但完美的 jQuery 滚动插件.滚动条不会影响原来的设计布局,滚动条的设计是完全可定制的.你可以改变几乎所有的 CSS 样式的滚动条,滚动条设计对脚 ...
- Leetcode: Perfect Rectangle
Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...
随机推荐
- Hdu 1429 胜利大逃亡(续) (bfs+状态压缩)
这道题的钥匙只有10个,可以压成二进制 这里有有句非常关键的话 (k & door[x][y]) == door[x][y] 一开始以为只要(k & door[x][y]) ==1就可 ...
- Spring MVC中 提交表单报错400
背景: 在写SpringMVC表单提交的代码的时,在最后点击提交的时候总是会出现400的错误 原因: 主要原因就是表单提交的数据和对应实体类的属性无法完全匹配 解决方案: 查看我们提交的数据是否完全和 ...
- 【codeforces 630E】A rectangle
[题目链接]:http://codeforces.com/problemset/problem/630/E [题意] 给你一个矩形的区域; 然后让你统计这个矩形区域内,有多少个正六边形. [题解] 规 ...
- cogs 2170. 大整数取模
2170. 大整数取模 ★ 输入文件:bigint.in 输出文件:bigint.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 输入正整数n和m,输出n mo ...
- HDU 4316 Contest 2
三个摄像头,在XOY上与立体的点求出在平面上的交点,然后求出凸包.三个凸包相交的面积即是所求,即是可以用半平面交的方法求解了. 模板题了.代码拿别人的. #include<cmath> # ...
- android 联系人中,在超大字体下,加入至联系人界面(ConfirmAddDetailActivity)上有字体显示不全的问题
联系人(Contacts)中,在超大字体下.加入至联系人界面 (ConfirmAddDetailActivity)上有字母显示不全,如"j"等 这是android布局比較紧凑引起的 ...
- 晋IT分享成长沙龙集锦
第一期"晋IT"分享成长沙龙于2014年7月19日圆满结束.下面是相关内容整理和第二期预告. 各位伙伴认真的介绍自己,介绍自己的业务,分析自己眼下存在的问题,大家一起探讨,真诚出谋 ...
- 自己定义CNN网络模型并使用caffe训练
caffe自带的例子中对mnist手写体数字训练使用的卷积神经网络是在lenet_train_test.prototxt中定义的,隐含层包含了2个卷积层,2个池化层,2个全连接层,1个激活函数层.网络 ...
- HBA卡
HBA,即主机总线适配器英文“Host Bus Adapter”缩写.是一个在服务器和存储装置间提供输入/输出(I/O)处理和物理连接的电路板和/或集成电路适配器. HBA减轻了主处理器在数据存储和检 ...
- vue引入swiper vue使用swiper vue脚手架使用swiper /引入js文件/引入css文件
vue引入swiper vue使用swiper vue脚手架使用swiper /引入js文件/引入css文件 ------------------------------------------- ...