BZOJ 1951 Lucas定理+CRT
思路:
枚举约数
套个裸的Lucas+CRT就完了...
//By SiriusRen
#include <cmath>
#include <cstdio>
using namespace std;
#define int long long
const int M=,N=;
void exgcd(int a,int b,int &x,int &y){
if(!b){x=,y=;return;}
exgcd(b,a%b,x,y);
int temp=x;x=y;y=temp-a/b*y;
}
int CRT(int *a,int *m,int num){
int ans=;
for(int i=;i<=num;i++){
int x,y;
exgcd(M/m[i],m[i],x,y);
ans=(ans+M/m[i]*x%M*a[i])%M;
}return ans;
}
int power(int x,int y){
int ans=;
while(y){
if(y&)ans=ans*x%(M+);
x=x*x%(M+),y>>=;
}return ans;
}
int m[]={,,,,},n,g,fac[N],inv[N],sqr,s[N],top,ans[],T;
int C(int x,int y){
if(x<y)return ;
if(x<m[T]&&y<m[T])return fac[x]*inv[y]%m[T]*inv[x-y]%m[T];
return C(x/m[T],y/m[T])*C(x%m[T],y%m[T])%m[T];
}
signed main(){
scanf("%lld%lld",&n,&g),sqr=sqrt(n);
for(int i=;i<sqr;i++)if(n%i==)s[++top]=i,s[++top]=n/i;
if(sqr*sqr==n)s[++top]=sqr;
if(n%sqr==&&sqr*sqr!=n)s[++top]=sqr,s[++top]=n/sqr;
fac[]=fac[]=inv[]=inv[]=;
for(T=;T<=;T++){
for(int i=;i<m[T];i++)fac[i]=fac[i-]*i%m[T];
for(int i=;i<m[T];i++)inv[i]=(m[T]-m[T]/i)*inv[m[T]%i]%m[T];
for(int i=;i<m[T];i++)inv[i]=inv[i]*inv[i-]%m[T];
for(int i=;i<=top;i++)ans[T]=(ans[T]+C(n,s[i]))%m[T];
}
printf("%lld\n",power(g,CRT(ans,m,)+M));
}
BZOJ 1951 Lucas定理+CRT的更多相关文章
- bzoj 1951 lucas crt 费马小定理
首先假设输入的是n,m 我们就是要求m^(Σ(c(n,i) i|n)) mod p 那么根据费马小定理,上式等于 m^(Σ(c(n,i) i|n) mod (p-1)) mod p 那么问题的关键就 ...
- HDU 5446 Unknown Treasure(Lucas定理+CRT)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- 组合数取模(lucas定理+CRT合并)(AC)
#include<bits/stdc++.h> #define re register #define int long long using namespace std; ; inlin ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- BZOJ 1951 古代猪文
快速幂+枚举质因数+欧拉定理+lucas定理+CRT. 注意两点: 1.if (n<m) C(n,m)=0. 2.这里0^0时应该return 0. #include<iostream&g ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
随机推荐
- 初识cocos creator的一些问题
本文的cocos creator版本为v1.9.01.color赋值cc.Label组件并没有颜色相关的属性,但是Node有color的属性. //如果4个参数,在ios下有问题let rgb = [ ...
- python 直接存入Excel表格
def write_excels(self, document): outwb = openpyxl.Workbook() outws = outwb.create_sheet(index=0) fo ...
- 【VIP视频网站项目一】搭建视频网站的前台页面(导航栏+轮播图+电影列表+底部友情链接)
首先来直接看一下最终的效果吧: 项目地址:https://github.com/xiugangzhang/vip.github.io 在线预览地址:https://xiugangzhang.githu ...
- 简单说基于JWT和appkey、sercurtyKey的SSO、身份认证方案
环境介绍, 一个大的系统由多个子系统组成.典型地,假设有一个平台,其上接入了多个应用.则有几个常见的问题需要处理, 1.SSO(包括单个应用退出时,需要处理为整个系统退出): 2.平台跳转到应用.及应 ...
- [51Nod1446] 限制价值树 (容斥+MT定理+折半搜索)
传送门 Description 有N个点(N<=40)标记为0,1,2,...N-1,每个点i有个价值val[i],如果val[i]=-1那么这个点被定义为bad,否则如果val[i] > ...
- springMVC知识点复习
@ResponseBody和@RequestBody的使用 <html> <script type="text/javascript" src="rel ...
- VirtualBox虚拟机下 解决centos系统无法上网的问题
首先,在VirtualBox中设置网卡连接方式:点“设置”,在弹出的界面中点“网络”,最后选择“连接方式”为“桥接网卡”或者网都可以络地址转换 这两种我试了试都可以 接下来修改一个文件就行: 1.打 ...
- 编写App测试用例的关注点
如何做到测试用例的百分百覆盖一直是测试用例编写过程中的难点,首先在测试时我们经常会遇见一些常见的bug,那么我们可以在编写测试用例时考虑到这些点. 一:关于业务逻辑 ...
- hdu 2444 交叉染色判断二分图+二分最大匹配
/*1A 31ms*/ #include<stdio.h> #include<string.h> #define N 300 int n; struct node { int ...
- asp.net-EF-表间关系
博客推荐 http://www.cnblogs.com/Gyoung/archive/2013/01/17/2864150.html 先学习下这几个方法 Has方法: HasOptional:前者包含 ...