zenDiscovery和master选举
上一篇通过 ElectMasterService源码,分析了master选举的原理的大部分内容:master候选节点ID排序保证选举一致性及通过设置最小可见候选节点数目避免brain split。节点排序后选举只能保证局部一致性,如果发生节点接收到了错误的集群状态就会选举出错误的master,因此必须有其它措施来保证选举的一致性。这就是上一篇所提到的第二点:被选举的数量达到一定的数目同时自己也选举自己,这个节点才能成为master。这一点体现在zenDiscovery中,本篇将结合节点的发现过程进一步介绍master选举机制。
节点启动后首先启动join线程,join线程会寻找cluster的master节点,如果集群之前已经启动,并且运行良好,则试图连接集群的master节点,加入集群。否则(集群正在启动)选举master节点,如果自己被选为master,则向集群中其它节点发送一个集群状态更新的task,如果master是其它节点则试图加入该集群。
join的代码如下所示:
private void innerJoinCluster() {
DiscoveryNode masterNode = null;
final Thread currentThread = Thread.currentThread();
//一直阻塞直到找到master节点,在集群刚刚启动,或者集群master丢失的情况,这种阻塞能够保证集群一致性
while (masterNode == null && joinThreadControl.joinThreadActive(currentThread)) {
masterNode = findMaster();
}
//有可能自己会被选举为master(集群启动,或者加入时正在选举)
if (clusterService.localNode().equals(masterNode)) {
//如果本身是master,则需要向其它所有节点发送集群状态更新
clusterService.submitStateUpdateTask("zen-disco-join (elected_as_master)", Priority.IMMEDIATE, new ProcessedClusterStateNonMasterUpdateTask() {
@Override
public ClusterState execute(ClusterState currentState) {
//选举时错误的,之前的master状态良好,则不更新状态,仍旧使用之前状态。
if (currentState.nodes().masterNode() != null) {
return currentState;
} DiscoveryNodes.Builder builder = new DiscoveryNodes.Builder(currentState.nodes()).masterNodeId(currentState.nodes().localNode().id());
// update the fact that we are the master...
ClusterBlocks clusterBlocks = ClusterBlocks.builder().blocks(currentState.blocks()).removeGlobalBlock(discoverySettings.getNoMasterBlock()).build();
currentState = ClusterState.builder(currentState).nodes(builder).blocks(clusterBlocks).build(); // eagerly run reroute to remove dead nodes from routing table
RoutingAllocation.Result result = allocationService.reroute(currentState);
return ClusterState.builder(currentState).routingResult(result).build();
} @Override
public void onFailure(String source, Throwable t) {
logger.error("unexpected failure during [{}]", t, source);
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
} @Override
public void clusterStateProcessed(String source, ClusterState oldState, ClusterState newState) {
if (newState.nodes().localNodeMaster()) {
// we only starts nodesFD if we are master (it may be that we received a cluster state while pinging)
joinThreadControl.markThreadAsDone(currentThread);
nodesFD.updateNodesAndPing(newState); // start the nodes FD
} else {
// if we're not a master it means another node published a cluster state while we were pinging
// make sure we go through another pinging round and actively join it
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
}
sendInitialStateEventIfNeeded();
long count = clusterJoinsCounter.incrementAndGet();
logger.trace("cluster joins counter set to [{}] (elected as master)", count); }
});
} else {
// 找到的节点不是我,试图连接该master
final boolean success = joinElectedMaster(masterNode); // finalize join through the cluster state update thread
final DiscoveryNode finalMasterNode = masterNode;
clusterService.submitStateUpdateTask("finalize_join (" + masterNode + ")", new ClusterStateNonMasterUpdateTask() {
@Override
public ClusterState execute(ClusterState currentState) throws Exception {
if (!success) {
// failed to join. Try again...
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
return currentState;
} if (currentState.getNodes().masterNode() == null) {
// Post 1.3.0, the master should publish a new cluster state before acking our join request. we now should have
// a valid master.
logger.debug("no master node is set, despite of join request completing. retrying pings.");
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
return currentState;
} if (!currentState.getNodes().masterNode().equals(finalMasterNode)) {
return joinThreadControl.stopRunningThreadAndRejoin(currentState, "master_switched_while_finalizing_join");
} // Note: we do not have to start master fault detection here because it's set at {@link #handleNewClusterStateFromMaster }
// when the first cluster state arrives.
joinThreadControl.markThreadAsDone(currentThread);
return currentState;
} @Override
public void onFailure(String source, @Nullable Throwable t) {
logger.error("unexpected error while trying to finalize cluster join", t);
joinThreadControl.markThreadAsDoneAndStartNew(currentThread);
}
});
}
}
以上就是join的过程。zenDiscovery在启动时会启动一个join线程,这个线程调用了该方法。同时在节点离开,master丢失等情况下也会重启这一线程仍然运行join方法。接下来看一下findMaster这个方法。这个方法体现了master选举的机制。代码如下:
private DiscoveryNode findMaster() {
//ping集群中的节点
ZenPing.PingResponse[] fullPingResponses = pingService.pingAndWait(pingTimeout);
if (fullPingResponses == null) {return null;
}// 过滤所得到的ping响应,虑除client节点,单纯的data节点
List<ZenPing.PingResponse> pingResponses = Lists.newArrayList();
for (ZenPing.PingResponse pingResponse : fullPingResponses) {
DiscoveryNode node = pingResponse.node();
if (masterElectionFilterClientNodes && (node.clientNode() || (!node.masterNode() && !node.dataNode()))) {
// filter out the client node, which is a client node, or also one that is not data and not master (effectively, client)
} else if (masterElectionFilterDataNodes && (!node.masterNode() && node.dataNode())) {
// filter out data node that is not also master
} else {
pingResponses.add(pingResponse);
}
}
final DiscoveryNode localNode = clusterService.localNode();
List<DiscoveryNode> pingMasters = newArrayList();
//获取所有ping响应中的master节点,如果master节点是节点本身则过滤掉。pingMasters列表结果要么为空(本节点是master)要么是同一个节点(出现不同节点则集群出现了问题
不过没关系,后面会进行选举)
for (ZenPing.PingResponse pingResponse : pingResponses) {
if (pingResponse.master() != null) {
if (!localNode.equals(pingResponse.master())) {
pingMasters.add(pingResponse.master());
}
}
} // nodes discovered during pinging
Set<DiscoveryNode> activeNodes = Sets.newHashSet();
// nodes discovered who has previously been part of the cluster and do not ping for the very first time
Set<DiscoveryNode> joinedOnceActiveNodes = Sets.newHashSet();
Version minimumPingVersion = localNode.version();
for (ZenPing.PingResponse pingResponse : pingResponses) {
activeNodes.add(pingResponse.node());
minimumPingVersion = Version.smallest(pingResponse.node().version(), minimumPingVersion);
if (pingResponse.hasJoinedOnce() != null && pingResponse.hasJoinedOnce()) {
joinedOnceActiveNodes.add(pingResponse.node());
}
}
//本节点暂时是master也要加入候选节点进行选举
if (localNode.masterNode()) {
activeNodes.add(localNode);
long joinsCounter = clusterJoinsCounter.get();
if (joinsCounter > 0) {
logger.trace("adding local node to the list of active nodes who has previously joined the cluster (joins counter is [{}})", joinsCounter);
joinedOnceActiveNodes.add(localNode);
}
}
//pingMasters为空,则本节点是master节点,
if (pingMasters.isEmpty()) {
if (electMaster.hasEnoughMasterNodes(activeNodes)) {//保证选举数量,说明有足够多的节点选举本节点为master,但是这还不够,本节点还需要再选举一次,如果
本次选举节点仍旧是自己,那么本节点才能成为master。这里就体现了master选举的第二条原则。
DiscoveryNode master = electMaster.electMaster(joinedOnceActiveNodes);
if (master != null) {
return master;
}
return electMaster.electMaster(activeNodes);
} else {
// if we don't have enough master nodes, we bail, because there are not enough master to elect from
logger.trace("not enough master nodes [{}]", activeNodes);
return null;
}
} else {
//pingMasters不为空(pingMasters列表中应该都是同一个节点),本节点没有被选举为master,那就接受之前的选举。
return electMaster.electMaster(pingMasters);
}
}
上面的重点部分都做了标注,就不再分析。除了findMaster方法,还有一个方法也体现了master选举,那就是handleMasterGone。下面是它的部分代码,提交master丢失task部分,
clusterService.submitStateUpdateTask("zen-disco-master_failed (" + masterNode + ")", Priority.IMMEDIATE, new ProcessedClusterStateNonMasterUpdateTask() {
@Override
public ClusterState execute(ClusterState currentState) {
//获取到当前集群状态下的所有节点
DiscoveryNodes discoveryNodes = DiscoveryNodes.builder(currentState.nodes())
// make sure the old master node, which has failed, is not part of the nodes we publish
.remove(masterNode.id())
.masterNodeId(null).build();
//rejoin过程仍然是重复findMaster过程
if (rejoin) {
return rejoin(ClusterState.builder(currentState).nodes(discoveryNodes).build(), "master left (reason = " + reason + ")");
}
//无法达到选举数量,进行findMaster过程
if (!electMaster.hasEnoughMasterNodes(discoveryNodes)) {
return rejoin(ClusterState.builder(currentState).nodes(discoveryNodes).build(), "not enough master nodes after master left (reason = " + reason + ")");
}
//在当前集群状态下,如果候选节点数量达到预期数量,那么选举出来的节点一定是同一个节点,因为所有的节点看到的集群states是一致的
final DiscoveryNode electedMaster = electMaster.electMaster(discoveryNodes); // elect master
final DiscoveryNode localNode = currentState.nodes().localNode();
....
}
从以上的代码可以看到master选举节点的应用场景,无论是findMaster还是handlemasterGone,他们都保证了选举一致性。那就是所选节点数量必须要达到一定的数量,否则不能认为选举成功,进入等待环境。如果当前节点被其它节点选举为master,仍然要进行选举一次以保证选举的一致性。这样在保证了选举数量同时对候选节点排序从而保证选举的一致性。
发现和加入集群是zenDiscovery的主要功能,当然它还有一些其它功能,如处理节点离开(handleLeaveRequest),处理master发送的最小clustersates(handleNewClusterStateFromMaster)等功能。这里就不一一介绍,有兴趣请参考相关源码。
总结一下:本节结合zenDiscovery,分析了master选举的另外一部分内容。同时zenDiscovery是节点发现集群功能的集合,它主要功能是发现(选举)出集群的master节点,并试图加入集群。同时如果 本机是master还会处理节点的离开和节点丢失,如果不是master则会处理来自master的节点状态更新。
zenDiscovery和master选举的更多相关文章
- elasticsearch的master选举机制
master作为cluster的灵魂必须要有,还必须要唯一,否则集群就出大问题了.因此master选举在cluster分析中尤为重要.对于这个问题我将分两篇来分析.第一篇也就是本篇,首先会简单说一说m ...
- (原)3.1 Zookeeper应用 - Master选举
本文为原创文章,转载请注明出处,谢谢 Master 选举 1.原理 服务器争抢创建标志为Master的临时节点 服务器监听标志为Master的临时节点,当监测到节点删除事件后展开新的一轮争抢 某个服务 ...
- zookeeper典型应用场景之一:master选举
对于zookeeper这种东西,仅仅知道怎么安装是远远不够的,至少要对其几个典型的应用场景进行了解,才能比较全面的知道zk究竟能干啥,怎么玩儿,以后的日子里才能知道这货如何能为我所用.于是,有了如下的 ...
- 使用zookeeper实现分布式master选举(c 接口版本)
zookeeper,已经被很多人所熟知,主要应用场景有(数据订阅/发布 ,负载均衡, 命名服务, 分布式协调/通知,集群管理,Master选举,分布式锁,分布式队列). C接口的描述 主要参考 Ha ...
- ZooKeeper场景实践:(6)集群监控和Master选举
1. 集群机器监控 这通经常使用于那种对集群中机器状态,机器在线率有较高要求的场景,可以高速对集群中机器变化作出响应.这种场景中,往往有一个监控系统,实时检測集群机器是否存活. 利用ZooKeeper ...
- Zookeeper实现master选举
使用场景 有一个向外提供的服务,服务必须7*24小时提供服务,不能有单点故障.所以采用集群的方式,采用master.slave的结构.一台主机多台备机.主机向外提供服务,备机负责监听主 ...
- Zookeeper系列五:Master选举、ZK高级特性:基本模型
一.Master选举 1. master选举原理: 有多个master,每次只能有一个master负责主要的工作,其他的master作为备份,同时对负责工作的master进行监听,一旦负责工作的mas ...
- org.apache.curator:master选举和分布式锁
1. master选举(LeaderSelector) 1)LeaderSelector构造函数 在leaderPath上建立分布式锁:mutex = new InterProcessMutex(cl ...
- zookeeper【4】master选举
考虑7*24小时向外提供服务的系统,不能有单点故障,于是我们使用集群,采用的是Master+Slave.集群中有一台主机和多台备机,由主机向外提 供服务,备机监听主机状态,一旦主机宕机,备机必需迅速接 ...
随机推荐
- Spring学习总结(12)——Druid连接池及监控在spring配置
Druid连接池及监控在spring配置如下: <bean id="dataSource" class="com.alibaba.druid.pool.DruidD ...
- 金融项目java开发_BigDecimal(解决计算精度问题)
当使用double进行商业运算时,double计算会丢失精度.可以使用BigDecimal进行计算. import java.math.BigDecimal; import org.junit.Tes ...
- Hadoop RPC框架
1.RPC框架概述 1.1 RPC(Remote Procedure Call Protocol)--远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不须要了解底层网络技术的协议. R ...
- Kinect for Windows V2 SDK+ VS2012 环境搭建
眼下使用的SDK版本号是KinectSDK-v2.0-PublicPreview1409-Setup.exe. 下载地址:http://www.microsoft.com/en-us/download ...
- HDU3265 Examining the Rooms【stirling数】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=3625 题目大意: 有N个房间,每一个房间的要是随机放在某个房间内,概率同样.有K次炸门的机会. 求 ...
- CSU1608: Particle Collider(后缀数组)
Description In the deep universe, there is a beautiful planet named as CS on which scientists have d ...
- Linux LVM(逻辑卷管理)
Lvm基本应用 什么是LVM? LVM 的全称是 Logical Volume Manager.中文为逻辑卷管理.它是Linux对磁盘分区的一种管理机制.它在传统的硬盘(或硬盘分区)和文件系统之间建立 ...
- 库:IO读写操作
在Java文件读取路径要注意的地方: 计算机:"D:\" 程序:"D://" 内存与硬盘之间进行文件的相互传输过程 以应用程序为参考点,应用程序从硬盘中读取数据 ...
- Ubuntu16.04添加HP Laserjet Pro M128fn打印机和驱动
一.全部设置->打印机->添加新打印机 添加打印机 二.选择自动搜索到的网络打印机HP Laserjet Pro M128fn,点击添加. 三.添加打印机完成,打印测试页进行测试. 四. ...
- 如何建立远程桌面连接(XP、Vista、Win7)
如何建立远程桌面连接(XP.Vista.Win7) 要求: 1:对方即你要连的机器必须要允许远程桌面连接,操作系统一般是winXP(单用户)和win2003server(多用户),具体设置:右击我的电 ...