【链接】https://cn.vjudge.net/problem/LightOJ-1205


【题意】


求出L..R范围内的回文个数

【题解】


数位DP;
先求出1..x里面的回文串个数.则做一下前缀和减掉就可以求出L..R之间的了
dfs(int start,int cur,bool ok,bool xiao){
其中start表示是从哪一位开始进行扫描的,这个东西用来处理前导0;
cur表示当前搜索到了第几位数字.
ok表示当前搜索到的字符串是否为回文.
xiao则表示是否出现已经搜索的某一位小于所给的数字的对应位,如果有的话,之后的每一位枚举就能一直到9了.
然后我们可以这样写记搜。
设f[i][j][k]表示从start位开始搜索,然后当前搜索到第cur位,k=0表示是回文串,k=1表示不是回文串.(当然还没搜完,只能说它可能是回文串)的回文串个数.
可以肯定,如果xiao==1了,则无论数字是什么,后面的回文串个数都是一样的了
比如
所给数字
9323
先倒过来
3239
假设我们枚举第一位为1
1xxx
则这个时候start = 4,cur = 3 (我们是倒过来的),然后因为第一位小于3,所以xiao=1
则这个时候,后面3个位置,实际上只有第2位是需要枚举的了,因为后面的两位肯定是和前面的两位一样的.
(而且每一位都可以0..9任意选)
也就是说,这个时候,答案已经和所给的数字没有任何关系了.
它是一个通式
也即这个时候往后算出来的答案f[start][cur][ok],在后序的搜索中如果遇到,是可以直接返回值的.
(注意只有在xiao==1的时候才能做记搜,因为如果xiao==0,显然之后位是有限制的,可能不是每一位都是0..9了)
}

UPD1
实际上,当ok==0的时候,直接返回0就可以了,不用再继续往下做了。
(因为再往后做ok也只会等于0)
这样f数组的第3维就可以省掉了

【错的次数】


0

【反思】


这种数位DP写成记搜比较好懂>_<

【代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 100; LL a,b;
int c[N+10],temp[N+10],dp[N+10][N+10][2]; LL dfs(int start,int cur,bool ok,bool xiao){
    if (cur < 1) return ok;
    int limit = (xiao?9:c[cur]);
    if (xiao && dp[start][cur][ok]!=-1)
        return dp[start][cur][ok];
    LL ret = 0;
    rep1(i,0,limit){
        temp[cur] = i;
        if (i == 0 && start == cur){
            ret += dfs(start-1,cur-1,ok,xiao||(i < limit));
        }else
            if (ok && cur < (start+1)/2 + 1)
                ret += dfs(start,cur-1,temp[start-cur+1]==temp[cur],xiao||(i<limit));
            else
                ret += dfs(start,cur-1,ok,xiao||(i<limit));
    }
    if (xiao) dp[start][cur][ok] = ret;
    return ret;
} LL f(LL x){
    if (x < 0) return 0;
    int len = 0;
    while (x){
        c[++len] = x%10;
        x/=10;
    }
    return dfs(len,len,1,0);
} int main(){
    //Open();
    //Close();
    ms(dp,255);
    int T,kk = 0;
    ri(T);
    while (T--){
        rl(a),rl(b);
        if (a > b) swap(a,b);
        os("Case ");oi(++kk);os(": ");ol(f(b)-f(a-1));puts("");
    }
    return 0;
}

【LightOJ - 1205】Palindromic Numbers的更多相关文章

  1. LightOJ - 1205:Palindromic Numbers (数位DP&回文串)

    A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the sam ...

  2. LightOJ - 1396 :Palindromic Numbers (III)(逐位确定法)

    Vinci is a little boy and is very creative. One day his teacher asked him to write all the Palindrom ...

  3. 【HDU 4722】 Good Numbers

    [题目链接] 点击打开链接 [算法] f[i][j]表示第i位,数位和对10取模余j的数的个数 状态转移,计算答案都比较简单,笔者不再赘述 [代码] #include<bits/stdc++.h ...

  4. 【Codeforces 1036C】Classy Numbers

    [链接] 我是链接,点我呀:) [题意] 让你求出只由3个非0数字组成的数字在[li,ri]这个区间里面有多少个. [题解] 只由3个非0数字组成的数字在1~10^18中只有60W个 dfs处理出来之 ...

  5. 【Codeforces 300C】Beautiful Numbers

    [链接] 我是链接,点我呀:) [题意] 让你找到长度为n的数字 这个数字只由a或者b组成 且这n个数码的和也是由a或者b组成的 求出满足这样要求的数字的个数 [题解] 枚举答案数字中b的个数为y,那 ...

  6. 【CSU 1556】Pseudoprime numbers

    题 Description Jerry is caught by Tom. He was penned up in one room with a door, which only can be op ...

  7. 【数位dp】Beautiful Numbers @2018acm上海大都会赛J

    目录 Beautiful Numbers PROBLEM 题目描述 输入描述: 输出描述: 输入 输出 MEANING SOLUTION CODE Beautiful Numbers PROBLEM ...

  8. 【UVA - 136】Ugly Numbers(set)

    Ugly Numbers Descriptions: Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequ ...

  9. 【Aizu - ALDS1_1_C】Prime Numbers(素数筛法)

    Prime Numbers  Descriptions: A prime number is a natural number which has exactly two distinct natur ...

随机推荐

  1. python之文件操作-复制、剪切、删除等

    以下是把sourceDir目录下的以.JPG结尾的文件所有拷贝到targetDir目录下: <span style="font-size:18px;">>> ...

  2. 在SSM框架中我设置拦截器filter不能通过注解获取到实现类

    我在用注解注入实现类的时候,出现了这样的错误:如以下截图: 这个地方报出的错误是说明我的一个接口类型的类没有获取到,后来我就想要是我的实现类没有获取到那么我就直接new一个实现类然后再进行调用就会出现 ...

  3. Python: PS 图层混合算法汇总

    本文用 Python 实现了PS 中的图层混合算法,把很多常见的图层混合算法都汇总到了一起,比起以前写的算法,就是用矩阵运算代替了很耗时的for 循环,运行效率有所提升.具体的代码如下: import ...

  4. 同一台服务器部署多个WEB应用,SESSION冲突的解决方法

    由于一台服务器上使用Tomcat部署多个WEB项目,而项目因为用到框架都是一样的,导致同时运行,session相互冲突,这个登录后,那个就得重新登录,造成了使用不方便,解决办法如下: 在server. ...

  5. 洛谷P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一 ...

  6. 利用Eventlog Analyzer分析日志

    利用EventlogAnalyzer分析日志 ManageEngineEventLogAnalyzer是一个基于Web技术.实时的事件监控管理解决方案,能够提高企业网络安全.减少工作站和服务器的宕机事 ...

  7. codeforces 710D Two Arithmetic Progressions(线性同余方程)

    题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...

  8. PXE无人值守部署centos7.4操作系统

    1.基础环境: 镜像ISO文件名为:CentOS-7-x86_64-DVD-1804.iso 2.安装需要的软件包 yum install dhcp xinetd syslinux httpd tft ...

  9. 关于“ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (2)”的解决。

    大致看了看网上的帖子,没看懂..... 去官网搜了一下,找到答案了,如下图. 译文:(mmp有种不妙的感觉!) 意思就是你还没启动你的linux系统上的mysql服务器,或者window上的mysql ...

  10. stat---显示文件的状态信息

    stat命令用于显示文件的状态信息.stat命令的输出信息比ls命令的输出信息要更详细. 语法 stat(选项)(参数) 选项 -L:支持符号连接: -f:显示文件系统状态而非文件状态: -t:以简洁 ...