SP687 REPEATS - Repeats(后缀数组)
一个初步的想法是我们枚举重复子串的长度\(L\)。然后跑一遍SA。然后我们枚举一个点\(i\),令他的对应点为\(i+L\),然后求出这两个点的LCP和LCS的长度答案就是这个点的答案就是\((len(LCP)+len(LCS)+L-1)/L\)。这个可以用跟\(EXKMP\)的类似的方法证明。
但是这样会T。
那么如何优化?我们在\(1,1+L,1+L*2...\)这些位置设置关键点(这个方法比较常见)。然后枚举每一个点改成每一个关键点。这样为什么会对?当我们对一个不是关键点的点求\(LCP\)和\(LCS\)时。如果\(LCP\)或\(LCS\)过关键点,那么和从关键点求\(LCS\),和\(LCP\)没有区别。如果不过时,那么这两个串就不连在一起,对答案没有贡献。
设置了关键点之后,复杂度变成了调和级数级别。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=100100;
int ans,T,n;
struct SA{
int c[N],x[N],y[N],m,sa[N],rk[N],height[N],mn[N][20];
char s[N];
void get_sa(){
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]=s[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){
int num=0;
for(int i=n-k+1;i<=n;i++)y[++num]=i;
for(int i=1;i<=n;i++)if(sa[i]>k)y[++num]=sa[i]-k;
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
for(int i=1;i<=n;i++)swap(x[i],y[i]);
x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(n==num)break;
m=num;
}
}
void get_height(){
int k=0;
for(int i=1;i<=n;i++)rk[sa[i]]=i;
for(int i=1;i<=n;i++){
if(rk[i]==1)continue;
if(k)k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])k++;
height[rk[i]]=k;
}
}
void pre_work(){
for(int i=1;i<=n;i++)mn[i][0]=height[i];
int len=log2(n);
for(int j=1;j<=len;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
mn[i][j]=min(mn[i][j-1],mn[i+(1<<j-1)][j-1]);
}
int getlcp(int l,int r){
if(l>r)swap(l,r);
l++;
// cout<<l<<" "<<r<<"aaaaa"<<endl;
int len=log2(r-l+1);
return min(mn[l][len],mn[r-(1<<len)+1][len]);
}
}A,B;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
T=read();
while(T--){
n=read();
ans=0;
A.m=B.m=122;
for(int i=1;i<=n;i++)cin>>A.s[i],B.s[n-i+1]=A.s[i];
A.get_sa();A.get_height();A.pre_work();
B.get_sa();B.get_height();B.pre_work();
for(int i=1;i<=n;i++)
for(int j=1;j+i<=n;j+=i)
ans=max(ans,(A.getlcp(A.rk[j],A.rk[j+i])+B.getlcp(B.rk[n-j+1],B.rk[n-j-i+1])+i-1)/i);
printf("%d\n",ans);
}
return 0;
}
SP687 REPEATS - Repeats(后缀数组)的更多相关文章
- SPOJ 687 Repeats(后缀数组+ST表)
[题目链接] http://www.spoj.com/problems/REPEATS/en/ [题目大意] 求重复次数最多的连续重复子串的长度. [题解] 考虑错位匹配,设重复部分长度为l,记s[i ...
- 【SPOJ – REPEATS】 后缀数组【连续重复子串】
字体颜色如何 字体颜色 SPOJ - REPEATS 题意 给出一个字符串,求重复次数最多的连续重复子串. 题解 引自论文-后缀数组--处理字符串的有力工具. 解释参考博客 "S肯定包括了字 ...
- SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解
题意: 给定一个串\(s\),\(s\)必有一个最大循环节的连续子串\(ss\),问最大循环次数是多少 思路: 我们可以知道,如果一个长度为\(L\)的子串连续出现了两次及以上,那么必然会存在\(s[ ...
- SPOJ Repeats(后缀数组+RMQ-ST)
REPEATS - Repeats no tags A string s is called an (k,l)-repeat if s is obtained by concatenating k& ...
- SPOJ REPEATS 后缀数组
题目链接:http://www.spoj.com/problems/REPEATS/en/ 题意:首先定义了一个字符串的重复度.即一个字符串由一个子串重复k次构成.那么最大的k即是该字符串的重复度.现 ...
- POJ - 2406 ~SPOJ - REPEATS~POJ - 3693 后缀数组求解重复字串问题
POJ - 2406 题意: 给出一个字符串,要把它写成(x)n的形式,问n的最大值. 这题是求整个串的重复次数,不是重复最多次数的字串 这题很容易想到用KMP求最小循环节就没了,但是后缀数组也能写 ...
- SPOJ - REPEATS Repeats (后缀数组)
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...
- spoj687 REPEATS - Repeats (后缀数组+rmq)
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed strin ...
- SPOJ - REPEATS —— 后缀数组 重复次数最多的连续重复子串
题目链接:https://vjudge.net/problem/SPOJ-REPEATS REPEATS - Repeats no tags A string s is called an (k,l ...
随机推荐
- activity工作流学习地址
https://wenku.baidu.com/view/8572153150e2524de4187e5d.html
- 路飞学城Python-Day30
11-僵尸进程与孤儿进程 现象:运行程序会产生父进程,在父进程中开子进程,这两个进程公用一个打印终端,运行的时候就只运行父进程,父进程虽然自己结束了,但是要等子进程结束完才会结束. 父进程可以开多个子 ...
- C语言基本语法——函数
1.什么是函数 2.函数语法 3.函数声明 4.函数调用 5.函数的形参与实参 6.return与exit关键字 7.递归函数 1.什么是函数 • 函数就是一连串语句被组合在一起,并指定了一个名字 • ...
- Vue-给对象新增属性(使用Vue.$set())
在开发过程中,我们时常会遇到这样一种情况:当vue的data里边声明或者已经赋值过的对象或者数组(数组里边的值是对象)时,向对象中添加新的属性,如果更新此属性的值,是不会更新视图的. 根据官方文档定义 ...
- T^T OJ 2144 并查集( 并查集... )
链接:传送门 思路:增加num[] 记录集合中的个数,maxx[] 记录集合中最大值,挺不错的并查集练习题,主要是 unite 函数里如何改变一些东西,挺好的题,能用C尽量不用C++,效率差蛮大的! ...
- CF487E Tourists(圆方树+堆+链剖)
本题解并不提供圆方树讲解. 所以不会圆方树的出门右转问yyb 没有修改的话圆方树+链剖. 方点的权值为点双连通分量里的最小值. 然后修改的话圆点照修,每一个方点维护一个小根堆. 考虑到可能被菊花卡死. ...
- systemctl 控制单元
[root@web01 ~]# systemctl status sshd.service ● sshd.service - OpenSSH server daemon Loaded: loaded ...
- .get(),eq()的区别
.get(),eq()的区别 eq:返回是一个jquery对象作用是将匹配的元素集合缩减为一个元素.这个元素在匹配元素集合中的位置变为0,而集合长度变成1. get:是一个html对象数组作用是取得其 ...
- dpdk l2fwd 应用流程分析
int MAIN(int argc, char **argv) { struct lcore_queue_conf *qconf; struct rte_eth_dev_info dev_info; ...
- Android开发之视图动画基础
Android的animation由四种类型组成 XML中 alpha 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动画效果 rotate 画面转移旋转 ...