机器学习: Python with Recurrent Neural Network
之前我们介绍了Recurrent neural network (RNN) 的原理:
http://blog.csdn.net/matrix_space/article/details/53374040
http://blog.csdn.net/matrix_space/article/details/53376870
这里,我们构建一个简单的RNN网络,激励函数我们用sigmoid 函数,利用这个网络,我们来测试二进制数的运算。网络重复模块的表达式是:
import copy, numpy as np
np.random.seed(0)
# compute sigmoid nonlinearity
# 定义sigmoid 函数
def sigmoid (x):
output = 1 / (1+np.exp(-x))
return output
# convert output to sigmoid function to its derivative
# 定义sigmoid 函数的导数
def sigmoid_output_to_derivative(output):
return output*(1-output)
# training dataset generation
# 生成训练集
int2binary = {}
binary_dim = 8
max_number = pow (2, binary_dim)
binary = np.unpackbits(np.array([range(max_number)], dtype=np.uint8).T, axis=1)
# np.unpackbits 是将一个uint8的数组元素都转换成0-1二进制形式,这里max_number 是256,
# binary 里面一共存了0-255 共 256 个二进制数
for i in range(max_number):
int2binary[i]=binary[i]
# input parameters
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
# weight 的初始化
synapse_0 = 2 * np.random.random((input_dim, hidden_dim))-1
synapse_1 = 2 * np.random.random((hidden_dim, output_dim))-1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) -1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
for j in range(10000):
# 生成一个0-128之间的随机数
# 获取这个数的二进制序列
a_int = np.random.randint(max_number/2)
a = int2binary [a_int]
b_int = np.random.randint(max_number/2)
b = int2binary [b_int]
c_int = a_int + b_int
c = int2binary [c_int]
d = np.zeros_like(c)
overallError = 0
layer_2_deltas = list ()
layer_1_values = list ()
layer_1_values.append(np.zeros(hidden_dim))
# moving along the positions in the binary encoding
for position in range(binary_dim):
# generate input and output
X = np.array([[a[binary_dim-position-1], b[binary_dim-position-1]]])
y = np.array([[c[binary_dim-position-1]]]).T
# 计算重复模块的隐含层的输入和输出
layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
# BP
layer_2_error = y-layer_2
layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
overallError += np.abs(layer_2_error[0])
d[binary_dim-position-1] = np.round(layer_2[0][0])
layer_1_values.append(copy.deepcopy(layer_1))
future_layer_1_delta = np.zeros(hidden_dim)
for position in range (binary_dim):
X = np.array([[a[position], b[position]]])
layer_1 = layer_1_values [-position-1]
pre_layer_1 = layer_1_values[-position-2]
layer_2_delta = layer_2_deltas[-position-1]
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(
synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
# weight update
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
synapse_h_update += np.atleast_2d(pre_layer_1).T.dot(layer_1_delta)
synapse_0_update += X.T.dot(layer_1_delta)
future_layer_1_delta = layer_1_delta
synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha
synapse_0_update *= 0
synapse_1_update *= 0
synapse_h_update *= 0
# print out progress
if (j % 500 == 0):
print ("Error: ", str(overallError))
print ("Pred:", str(d))
print ("True:", str(c))
out = 0
for index, x in enumerate(reversed(d)):
out += x*pow(2, index)
print (str(a_int) + "+" + str(b_int) + "=" + str(out))
print ("---------------")
运行结果:
('Error: ', '[ 3.45638663]')
('Pred:', '[0 0 0 0 0 0 0 1]')
('True:', '[0 1 0 0 0 1 0 1]')
9+60=1
---------------
('Error: ', '[ 4.02253884]')
('Pred:', '[0 1 1 0 1 0 1 1]')
('True:', '[1 0 0 0 0 0 0 1]')
112+17=107
---------------
('Error: ', '[ 3.63389116]')
('Pred:', '[1 1 1 1 1 1 1 1]')
('True:', '[0 0 1 1 1 1 1 1]')
28+35=255
---------------
('Error: ', '[ 3.99234598]')
('Pred:', '[1 1 0 1 1 0 1 0]')
('True:', '[1 0 1 1 0 0 1 1]')
78+101=218
---------------
('Error: ', '[ 3.91366595]')
('Pred:', '[0 1 0 0 1 0 0 0]')
('True:', '[1 0 1 0 0 0 0 0]')
116+44=72
---------------
('Error: ', '[ 3.65154804]')
('Pred:', '[1 1 0 1 1 0 1 0]')
('True:', '[1 1 0 1 1 1 1 0]')
122+100=218
---------------
('Error: ', '[ 3.72191702]')
('Pred:', '[1 1 0 1 1 1 1 1]')
('True:', '[0 1 0 0 1 1 0 1]')
4+73=223
---------------
('Error: ', '[ 3.35048888]')
('Pred:', '[1 0 0 1 1 0 0 1]')
('True:', '[1 0 0 1 0 0 0 1]')
76+69=153
---------------
('Error: ', '[ 3.5852713]')
('Pred:', '[0 0 0 0 1 0 0 0]')
('True:', '[0 1 0 1 0 0 1 0]')
71+11=8
---------------
('Error: ', '[ 2.43239777]')
('Pred:', '[0 1 1 0 1 0 1 1]')
('True:', '[0 1 1 0 1 0 1 1]')
72+35=107
---------------
('Error: ', '[ 2.53352328]')
('Pred:', '[1 0 1 0 0 0 1 0]')
('True:', '[1 1 0 0 0 0 1 0]')
81+113=162
---------------
('Error: ', '[ 1.87382863]')
('Pred:', '[0 1 1 0 0 0 1 0]')
('True:', '[0 1 1 0 0 0 1 0]')
21+77=98
---------------
('Error: ', '[ 0.57691441]')
('Pred:', '[0 1 0 1 0 0 0 1]')
('True:', '[0 1 0 1 0 0 0 1]')
81+0=81
---------------
('Error: ', '[ 0.75100965]')
('Pred:', '[0 0 1 1 1 1 0 0]')
('True:', '[0 0 1 1 1 1 0 0]')
49+11=60
---------------
('Error: ', '[ 1.42589952]')
('Pred:', '[1 0 0 0 0 0 0 1]')
('True:', '[1 0 0 0 0 0 0 1]')
4+125=129
---------------
('Error: ', '[ 0.6594703]')
('Pred:', '[0 1 1 0 1 1 0 0]')
('True:', '[0 1 1 0 1 1 0 0]')
80+28=108
---------------
('Error: ', '[ 0.47477457]')
('Pred:', '[0 0 1 1 1 0 0 0]')
('True:', '[0 0 1 1 1 0 0 0]')
39+17=56
---------------
('Error: ', '[ 0.7200904]')
('Pred:', '[1 0 1 0 1 0 0 0]')
('True:', '[1 0 1 0 1 0 0 0]')
123+45=168
---------------
('Error: ', '[ 0.21595037]')
('Pred:', '[0 0 0 0 1 1 1 0]')
('True:', '[0 0 0 0 1 1 1 0]')
11+3=14
---------------
('Error: ', '[ 0.52112049]')
('Pred:', '[1 0 1 0 1 0 1 1]')
('True:', '[1 0 1 0 1 0 1 1]')
71+100=171
---------------
参考来源:
https://github.com/llSourcell/recurrent_neural_net_demo
机器学习: Python with Recurrent Neural Network的更多相关文章
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...
- Recurrent Neural Network(递归神经网络)
递归神经网络(RNN),是两种人工神经网络的总称,一种是时间递归神经网络(recurrent neural network),另一种是结构递归神经网络(recursive neural network ...
- Sequence Models Week 1 Building a recurrent neural network - step by step
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...
- Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...
- Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...
- 循环神经网络(Recurrent Neural Network,RNN)
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...
随机推荐
- LLRB——红黑树的现代实现
一.本文内容 以一种简明易懂的方式介绍红黑树背后的逻辑实现2-3-4树,以及红黑树的插入.删除操作,重点在2-3-4树与红黑树的对应关系上,并理清红黑树相关操作的来龙去脉.抛弃以往复杂的实现,而分析红 ...
- glide 安装
glide是go的一个包管理工具 参考了 https://studygolang.com/articles/10453?fr=email 遇到的问题是,用了 go get githubXXXXX去下载 ...
- pppoe-环境下的mtu和mss
路由器上在宽带拨号高级设置页面会有设置数据包MTU的页面 数据包MTU(字节):1480 (默认是1480,如非必要,请勿修改) PPPoE/ADSL:1492 ,可以尝试修改为1492 MTU: M ...
- HTTP请求头与响应头
http://m.blog.csdn.net/article/details?id=48918857 本篇文章中,将学习一下HTTP请求头与响应头的知识. 一.HTTP头引入: 正确的设置HTTP头部 ...
- AOP 专题
Spring框架有两个核心思想:IOC和AOP Spring IOC指的是控制翻转,使用普通JAVA Bean,在运行时由Spring容器统一管理和串联,服务于不同的流程,在开发过程中对Spring ...
- 【t010】最近距离
Time Limit: 1 second Memory Limit: 32 MB [问题描述] 聚类方法要求将空间中的点集,按照一点的方式进行归类,要求每一类中的点集相互之间的距离足够的"近 ...
- 我眼中的c++编程总结-20150602
断断续续的学习了非常多东西,有51.Avr.ARM.PLC.C\C++.C#.TB.MC.mql4.linux....等等,近乎填鸭或者囫囵吞枣的.甚至饿狼般的扑到里面,慢慢的积累和理解中,非常多知识 ...
- 用户之间imp的问题
今天同事说申请了一个从生产导出的dump文件,须要导入測试库进行測试. 之前做的基本都是本库导出,本库导入的操作,比如:imp test/***@test tables=tbl_fuel file=H ...
- html5 video标签如何禁止视频下载
html5 video标签如何禁止视频下载 一.总结 一句话总结:bing方法给video对象绑定return false的匿名方法. 1.html5 video标签如何禁止视频下载? bing方法给 ...
- c3p0 xml配置文件模版
<c3p0-config> <default-config> <property name="driverClass">com.mysql.jd ...