XOR and Favorite Number


time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, …, aj is equal to k.

Input

The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob’s favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob’s array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Sample test(s)

Input

6 2 3

1 2 1 1 0 3

1 6

3 5

Output

7

0

Input

5 3 1

1 1 1 1 1

1 5

2 4

1 3

Output

9

4

4

Note

In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.

题意:有n个数和m次询问,每一询问会有一个L和R,表示所询问的区间,问在这个区间中有多少个连续的子区间的亦或和为k

思路:本题只有询问没有修改,所以比较适合离线处理,而莫队算法是离线处理一类区间不修改查询类问题的算法。就是如果你知道了[L,R]的答案。你可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案的话。就可以使用莫队算法。,第一次接触莫队算法感觉是一种很优雅的暴力,莫队算法是莫涛发明的。先对序列分块。然后对于所有询问按照L所在块的大小排序。如果一样再按照R排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。

一、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n^0.5块,所以这一部分时间复杂度是n^1.5。

二、i与i+1跨越一块,r最多变化n,由于有n^0.5块,所以这一部分时间复杂度是n^1.5

三、i与i+1在同一块内时变化不超过n^0.5,跨越一块也不会超过2*n^0.5,不妨看作是n^0.5。由于有n个数,所以时间复杂度是n^1.5于是就变成了O(n^1.5)了。

对于这道题,假设我们现在有一个前缀异或和数组sum[],现在我们要求区间[L,R]的异或的值,用sum数组表示就是sum[L-1]^sum[R]==K,或者说是K^sum[R]==sum[L-1]

详细见代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <iostream>
#include <algorithm>
#define LL long long using namespace std; const int Max = 1100000; const int MAXM = 1<<22; typedef struct node
{
int L ,R; int Id;
}Point ; Point a[Max]; LL sum[Max]; LL ans[Max]; int n,m; LL k; int L,R; LL cnt[MAXM],ant; bool cmp(Point b,Point c)//将区间分块排序
{
if(b.L/400==c.L/400)
{
return b.R<c.R;
}
else
{
return b.L<c.L;
}
} void Dec(LL s) //将多算的数目去除
{
--cnt[s]; ant-=cnt[s^k];
} void Inc(LL s)//将没有遍历的点对应的数目加上
{
ant += cnt[s^k]; cnt[s]++;
} int main()
{
scanf("%d %d %lld",&n,&m,&k); LL data; for(int i=1;i<=n;i++) //
{
scanf("%lld",&sum[i]); sum[i]^=sum[i-1]; } for(int i=1;i<=m;i++)
{
scanf("%d %d",&a[i].L,&a[i].R);
a[i].Id = i;
a[i].L--;// 在这里提前处理
}
sort(a+1,a+m+1,cmp); L=0,R=0,cnt[0]=1,ant=0; for(int i=1;i<=m;i++)
{
while(R<a[i].R)
{
Inc(sum[++R]);
} while(R>a[i].R)
{
Dec(sum[R--]);
}
while(L<a[i].L)
{
Dec(sum[L++]);
}
while(L>a[i].L)
{
Inc(sum[--L]);
} ans[a[i].Id]=ant;
}
for(int i=1;i<=m;i++)
{
printf("%lld\n",ans[i]);
}
return 0;
}

Codeforces617 E . XOR and Favorite Number(莫队算法)的更多相关文章

  1. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法

    E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...

  2. codeforces 617E E. XOR and Favorite Number(莫队算法)

    题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...

  3. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  4. CodeForces - 617E XOR and Favorite Number 莫队算法

    https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry,  问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...

  5. Codeforces 617E XOR and Favorite Number莫队

    http://codeforces.com/contest/617/problem/E 题意:给出q个查询,每次询问区间内连续异或值为k的有几种情况. 思路:没有区间修改,而且扩展端点,减小端点在前缀 ...

  6. CODEFORCES 340 XOR and Favorite Number 莫队模板题

    原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...

  7. E. XOR and Favorite Number 莫队 2038: [2009国家集训队]小Z的袜子(hose)

    一直都说学莫队,直到现在才学,训练的时候就跪了   T_T,其实挺简单的感觉.其实训练的时候也看懂了,一知半解,就想着先敲.(其实这样是不好的,应该弄懂再敲,以后要养成这个习惯) 前缀异或也很快想出来 ...

  8. codeforces 617E. XOR and Favorite Number 莫队

    题目链接 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k. 维护一个前缀异或值就可以了. 要注意的是 区间[l ...

  9. Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子

    #include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...

随机推荐

  1. 单例模式-C++

    单例模式(Singleton) --本文内容部分引自<大话设计模式 Chapter21> 一.概念:保证一个类仅有一个实例,并提供一个访问它的全局访问点. 通常我们可以让一个全局变量使一个 ...

  2. javaScript中值类型通过typeof直接进行检测

    通过试验,对图像处理有了进一步深入了解和认知,基于第一次的滤波的处理和这次灰度线性变换和直方图处理图像,知道了图像的成像原理,都是一个个的像素点,就是矩阵的值.以后可以利用MATLAB进行图像处理,运 ...

  3. 线程中调用python win32com

    在python的线程中,调用win32com.client.Dispatch 调用windows下基于COM组件的应用接口, 需要在调用win32com.client.Dispatch前,调用pyth ...

  4. java中分页效果的实现代码

    首先是将分页所需的一些个资源 ,抽象出一个javabean对象-PageBean: 先把需要分页的数据或是记录都查询出来 存入一个集合类里如List或是Vector, 然后利用其sublist(int ...

  5. Spring的JDBC框架

    转自: http://www.cnblogs.com/windlaughing/p/3287750.html Spring JDBC提供了一套JDBC抽象框架,用于简化JDBC开发. Spring主要 ...

  6. Python学习【第四篇】用户输入及判断

    用户输入: 例1.写一个用户输入密码的小程序,流程如下: 1.用户输入自己的用户名 2.打印"Hello+用户名" #!/usr/bin/env python #name = ra ...

  7. leetcode 28

    题目描述: Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if ...

  8. ES5 Objece.creat实现继承

    Object.create() Object.create(proto [, propertiesObject ]) 是E5中提出的一种新的对象创建方式,第一个参数是要继承的原型,如果不是一个子函数, ...

  9. Last time, I wrote a pager, but now it seems this no longer has use, so I want to paste it here.

    public class Pager<T> where T : new() { private IEnumerable<T> _all; private IEnumerable ...

  10. c语言的学习秘籍之链表

    刚翻出来的作品,有点低级,但希望能起到作用: #include<stdio.h>#include<stdlib.h>#include<time.h>#include ...