XOR and Favorite Number


time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, …, aj is equal to k.

Input

The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob’s favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob’s array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Sample test(s)

Input

6 2 3

1 2 1 1 0 3

1 6

3 5

Output

7

0

Input

5 3 1

1 1 1 1 1

1 5

2 4

1 3

Output

9

4

4

Note

In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.

题意:有n个数和m次询问,每一询问会有一个L和R,表示所询问的区间,问在这个区间中有多少个连续的子区间的亦或和为k

思路:本题只有询问没有修改,所以比较适合离线处理,而莫队算法是离线处理一类区间不修改查询类问题的算法。就是如果你知道了[L,R]的答案。你可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案的话。就可以使用莫队算法。,第一次接触莫队算法感觉是一种很优雅的暴力,莫队算法是莫涛发明的。先对序列分块。然后对于所有询问按照L所在块的大小排序。如果一样再按照R排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。

一、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n^0.5块,所以这一部分时间复杂度是n^1.5。

二、i与i+1跨越一块,r最多变化n,由于有n^0.5块,所以这一部分时间复杂度是n^1.5

三、i与i+1在同一块内时变化不超过n^0.5,跨越一块也不会超过2*n^0.5,不妨看作是n^0.5。由于有n个数,所以时间复杂度是n^1.5于是就变成了O(n^1.5)了。

对于这道题,假设我们现在有一个前缀异或和数组sum[],现在我们要求区间[L,R]的异或的值,用sum数组表示就是sum[L-1]^sum[R]==K,或者说是K^sum[R]==sum[L-1]

详细见代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <iostream>
#include <algorithm>
#define LL long long using namespace std; const int Max = 1100000; const int MAXM = 1<<22; typedef struct node
{
int L ,R; int Id;
}Point ; Point a[Max]; LL sum[Max]; LL ans[Max]; int n,m; LL k; int L,R; LL cnt[MAXM],ant; bool cmp(Point b,Point c)//将区间分块排序
{
if(b.L/400==c.L/400)
{
return b.R<c.R;
}
else
{
return b.L<c.L;
}
} void Dec(LL s) //将多算的数目去除
{
--cnt[s]; ant-=cnt[s^k];
} void Inc(LL s)//将没有遍历的点对应的数目加上
{
ant += cnt[s^k]; cnt[s]++;
} int main()
{
scanf("%d %d %lld",&n,&m,&k); LL data; for(int i=1;i<=n;i++) //
{
scanf("%lld",&sum[i]); sum[i]^=sum[i-1]; } for(int i=1;i<=m;i++)
{
scanf("%d %d",&a[i].L,&a[i].R);
a[i].Id = i;
a[i].L--;// 在这里提前处理
}
sort(a+1,a+m+1,cmp); L=0,R=0,cnt[0]=1,ant=0; for(int i=1;i<=m;i++)
{
while(R<a[i].R)
{
Inc(sum[++R]);
} while(R>a[i].R)
{
Dec(sum[R--]);
}
while(L<a[i].L)
{
Dec(sum[L++]);
}
while(L>a[i].L)
{
Inc(sum[--L]);
} ans[a[i].Id]=ant;
}
for(int i=1;i<=m;i++)
{
printf("%lld\n",ans[i]);
}
return 0;
}

Codeforces617 E . XOR and Favorite Number(莫队算法)的更多相关文章

  1. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法

    E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...

  2. codeforces 617E E. XOR and Favorite Number(莫队算法)

    题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...

  3. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  4. CodeForces - 617E XOR and Favorite Number 莫队算法

    https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry,  问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...

  5. Codeforces 617E XOR and Favorite Number莫队

    http://codeforces.com/contest/617/problem/E 题意:给出q个查询,每次询问区间内连续异或值为k的有几种情况. 思路:没有区间修改,而且扩展端点,减小端点在前缀 ...

  6. CODEFORCES 340 XOR and Favorite Number 莫队模板题

    原来我直接学的是假的莫队 原题: Bob has a favorite number k and ai of length n. Now he asks you to answer m queries ...

  7. E. XOR and Favorite Number 莫队 2038: [2009国家集训队]小Z的袜子(hose)

    一直都说学莫队,直到现在才学,训练的时候就跪了   T_T,其实挺简单的感觉.其实训练的时候也看懂了,一知半解,就想着先敲.(其实这样是不好的,应该弄懂再敲,以后要养成这个习惯) 前缀异或也很快想出来 ...

  8. codeforces 617E. XOR and Favorite Number 莫队

    题目链接 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k. 维护一个前缀异或值就可以了. 要注意的是 区间[l ...

  9. Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子

    #include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...

随机推荐

  1. 带你玩转JavaWeb开发之三 -JS插件实战开发

    前提:需要掌握的知识点           填写HTML代码 Element元素中有一个innerHTML属性,这个属性可以填写一段html代码 innerHTML = "<font ...

  2. 论文笔记(1)——《Where's Wally?Precise User Discovery Attacks in Location Proximity Services》

    Abstract: 位置相近服务在社交和移动网络的广泛使用是基于可用性和用户隐私的平衡,但引发了三角定位攻击的风险.文章系统化地讨论了此类攻击的防范,包括问题在不同临近模型下的形式化,针对不同模型的有 ...

  3. HTML JQuery 技巧总结

    元素之间的操作 $(".level1").children()  获取到所有相邻的子元素$(".level1").children("a") ...

  4. css定位 与position

    本文同时发表于本人个人网站 www.yaoxiaowen.com 在正式讨论position之前,我们需要知道几个概念. 块元素:独占一行的元素.比如div,h1~h6,p等,它是自带换行的. 内联元 ...

  5. 分析器错误消息: 未能加载类型“Automation.Web.MvcApplication”。

    常见原因1 : 可能是自己手动修改了项目 ==>属性==>生成的输出路径 ,导致版本不兼容 常见员因2  :  Global的 命名空间 与 项目的命名空间 不一致 常见原因3  : 查看 ...

  6. MVC+knocKout.js 实现下拉框级联

    数据库:部门表和员工表 在控制器里面的操作: public ActionResult Index3() { ViewBag.departments = new SelectList(getDepart ...

  7. Ehcache Demo

    转自: https://my.oschina.net/zb0423/blog/60957http://www.cnblogs.com/fsjin/articles/3521261.html Ehcac ...

  8. linux系统中如何查看日志(转)

    cat tail -f 日 志 文 件 说    明 /var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一 /var/log/secure 与安 ...

  9. 自动打开Accesibility Service 可以自动安装APP

    package com.venscor.helloworld;import java.io.BufferedReader;import java.io.IOException;import java. ...

  10. 选择App开发外包时,你该了解哪些法律常识?

    随着App需求的激增,选择App外包服务的客户也多了起来.然而客户和开发方对于其中的法律条款却不甚了解,导致在服务过程中,时常会发生一些分歧和纠纷,最终致使项目搁浅. 为了普及App外包的法律常识,移 ...