转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html

  很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系。

对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理。

  FS:时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅立叶级数展开(Fourier Series,FS),它用于分析连续周期信号。

  FT:是傅立叶变换(Fourier Transform,FT),它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,所以具有时域连续非周期对应频域连续非周期的特点。



  FS和FT 都是用于连续信号频谱的分析工具,它们都以傅立叶级数理论问基础推导出的。时域上连续的信号在频域上都有非周期的特点,但对于周期信号和非周期信号又有在频域离散和连续之分。

在自然界中除了存在温度,压力等在时间上连续的信号,还存在一些离散信号,离散信号可经过连续信号采样获得,也有本身就是离散的。例如,某地区的年降水量或平均增长率等信号,这类信号的时间变量为年,不在整数时间点的信号是没有意义的。用于离散信号频谱分析的工具包括DFS,DTFT和DFT。

  DTFT:是离散时间傅立叶变换(Discrete-time Fourier Transform,DTFT) ,它用于离散非周期序列分析,根据连续傅立叶变换要求连续信号在时间上必须可积这一充分必要条件,那么对于离散时间傅立叶变换,用于它之上的离散序列也必须满足在时间轴上级数求和收敛的条件;由于信号是非周期序列,它必包含了各种频率的信号,所以DTFT对离散非周期信号变换后的频谱为连续的,即有时域离散非周期对应频域连续周期的特点。



  当离散的信号为周期序列时,严格的讲,傅立叶变换是不存在的,因为它不满足信号序列绝对级数之和收敛(绝对可和)这一傅立叶变换的充要条件,但是采用离散傅立叶级数(Discrete Fourier Series ,DFS)这一分析工具仍然可以对其进行傅立叶分析。

  我们知道周期离散信号是由无穷多相同的周期序列在时间轴上组成的,假设周期为NN,即每个周期序列都有NN个元素,而这样的周期序列有无穷多个,由于无穷多个周期序列都相同,所以可以只取其中一个周期就足以表示整个序列了,这个被抽出来表示整个序列特性的周期称为主值周期,这个序列称为主值序列。然后以NN对应的频率作为基频构成傅立叶级数展开所需要的复指数序列ek(n)=e−j2πnk/Ne^{k(n)} = e^{-j 2\pi n k/N},用主值序列与复指数序列(代表各个频率的基序列)取相关(乘加运算),得出每 个主值在各频率上的频谱分量,这样就表示出了周期序列的频谱特性。

  根据DTFT,对于有限长序列作Z变换(Z-transformation)或离散傅立叶变换都是可行的,或者说有限长序列的频域和复频域分析在理论上都已经解决;但对于数字系统,无论是Z变换还是离散傅立叶变换的适用方面都存在一些问题,重要是因为频率变量的连续性性质(DTFT变换出连续频谱),不便于数字运算和储存。

  参考DFS,可以采用类似DFS的分析方法对解决以上问题。可以把有限长非周期序列假设为一无限长周期序列的一个主直周期,即对有限长非周期序列进行周期延拓,延拓后的序列完全可以采用DFS进行处理,即采用复指数基频序列和此有限长时间序列取相关,得出每个主值在各频率上的频谱分量以表示出这个“主值周期”的频谱信息。

  由于DFT借用了DFS,这样就假设了序列的周期无限性,但在处理时又对区间作出限定(主值区间),以符合有限长的特点,这就使DFT带有了周期性。另 外,DFT只是对一周期内的有限个离散频率的表示,所以它在频率上是离散的,就相当于DTFT变换成连续频谱后再对其采样,此时采样频率等于序列延拓后的周期N,即主值序列的个数。

  引入一篇博客中的图组,来进一步说明:

  学过卷积,我们都知道有时域卷积定理和频域卷积定理,在这里只需要记住两点:

  1.在一个域的相乘等于另一个域的卷积;

  2.与脉冲函数的卷积,在每个脉冲的位置上将产生一个波形的镜像。(在任何一本信号与系统课本里,此两条性质有详细公式证明)

  下面,就用这两条性质来说明DFT,DTFT,DFS,FFT之间的联系:

  先看图片:

  首先来说图(1)和图(2),对于一个模拟信号,如图(1)所示,要分析它的频率成分,必须变换到频域,这是通过傅立叶变换即FT(Fourier Transform)得到的,于是有了模拟信号的频谱,如图(2);注意1:时域和频域都是连续的!

  但是,计算机只能处理数字信号,首先需要将原模拟信号在时域离散化,即在时域对其进行采样,采样脉冲序列如图(3)所示,该采样序列的频谱如图(4),可见它的频谱也是一系列的脉冲。所谓时域采样,就是在时域对信号进行相乘,(1)×(3)后可以得到离散时间信号x[n],如图(5)所示;由前面的性质1,时域的相乘相当于频域的卷积,那么,图(2)与图(4)进行卷积,根据前面的性质2知,会在各个脉冲点处出现镜像,于是得到图(6),它就是图(5)所示离散时间信号x[n]的DTFT(Discrete time Fourier Transform),即离散时间傅立叶变换,这里强调的是“离散时间”四个字。注意2:此时时域是离散的,而频域依然是连续的。

  经过上面两个步骤,我们得到的信号依然不能被计算机处理,因为频域既连续,又周期。我们自然就想到,既然时域可以采样,为什么频域不能采样呢?这样不就时域与频域都离散化了吗?没错,接下来对频域在进行采样,频域采样信号的频谱如图(8)所示,它的时域波形如图(7)。现在我们进行频域采样,即频域相乘,图(6)×图(8)得到图(10),那么根据性质1,这次是频域相乘,时域卷积了吧,图(5)和图(7)卷积得到图(9),不出所料的,镜像会呈周期性出现在各个脉冲点处。我们取图(10)周期序列的主值区间,并记为X(k),它就是序列x[n]的DFT(Discrete Fourier Transform),即离散傅立叶变换。可见,DFT只是为了计算机处理方便,在频率域对DTFT进行的采样并截取主值而已。有人可能疑惑,对图(10)进行IDFT,回到时域即图(9),它与原离散信号图(5)所示的x[n]不同呀,它是x[n]的周期性延拓!没错,因此你去查找一个IDFT的定义式,是不是对n的取值区间进行限制了呢?这一限制的含义就是,取该周期延拓序列的主值区间,即可还原x[n]!

  FFT呢?FFT的提出完全是为了快速计算DFT而已,它的本质就是DFT!我们常用的信号处理软件MATLAB或者DSP软件包中,包含的算法都是FFT而非DFT。

  DFS,是针对时域周期信号提出的,如果对图(9)所示周期延拓信号进行DFS,就会得到图(10),只要截取其主值区间,则与DFT是完全的一一对应的精确关系。这点对照DFS和DFT的定义式也可以轻易的看出。因此DFS与DFT的本质是一样的,只不过描述的方法不同而已。

  不知道经过上面的解释,您是否明白各种T的关系了呢?如果您不是算法设计者,其实只要懂得如何使用FFT分析频谱即可。

  其实个人认为,纠结了这么多,就是为了打破现实模拟世界与计算机数字世界的界限呀!

转载:一幅图弄清DFT与DTFT,DFS的关系的更多相关文章

  1. 几幅图片弄清DFT、DTFT、DFS的关系 数字信号处理

    原址:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...

  2. 一幅图秒懂LoadAverage(转载)

    转自:http://www.habadog.com/2015/02/27/what-is-load-average/ 一幅图秒懂LoadAverage(负载)   一.什么是Load Average? ...

  3. DFT,DTFT,DFS,FFT区别

        学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一 ...

  4. DFT、DTFT、DFS、FFT之间的关系

    DFT.DTFT.DFS.FFT.FT.FS之间的关系 FT和FS是研究连续信号的,在数字信号处理中不涉及. 主要是前四种的关系: DFT(Discrete Fourier Transform):离散 ...

  5. Hadoop阅读笔记(四)——一幅图看透MapReduce机制

    时至今日,已然看到第十章,似乎越是焦躁什么时候能翻完这本圣经的时候也让自己变得更加浮躁,想想后面还有一半的行程没走,我觉得这样“有口无心”的学习方式是不奏效的,或者是收效甚微的.如果有幸能有大牛路过, ...

  6. 图说Java —— 理解Java机制最受欢迎的8幅图

    原文链接:  Top 8 Diagrams for Understanding Java 翻译人员: 铁锚 翻译时间: 2013年10月29日 世间总是一图胜过千万言! 下面的8幅图来自于 Progr ...

  7. 一幅图概括Android测试的方方面面

    一幅图概括Android测试的方方面面,来自网络: 另外的一些测试技巧 1,测试应用程序时,环境是很大的一个影响因素:系统时间,网络情况,异常关闭等 2,测试应用程序时,第三方嵌入程序也是有影响的.如 ...

  8. 理解Java机制最受欢迎的8幅图

    原文链接:  Top 8 Diagrams for Understanding Java 翻译人员: 铁锚 翻译时间: 2013年10月29日 世间总是一图胜过千万言! 下面的8幅图来自于 Progr ...

  9. maltab-图像拼接(左右两幅图)

    图像拼接 参考自 https://blog.csdn.net/m0_37565736/article/details/79865990 并修改了其中错误的地方,添加自己的讲解或者看法. 我要拼接的是一 ...

随机推荐

  1. 更新与升级 FreeBSD

    https://www.freebsd.org/doc/zh_CN/books/handbook/updating-upgrading-freebsdupdate.html 安全补丁存储在远程的机器上 ...

  2. Java:对象的强、软、弱、虚引用

    转自: http://zhangjunhd.blog.51cto.com/113473/53092 1.对象的强.软.弱和虚引用 在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无 ...

  3. ECMAScript 5中的数据属性和访问器属性

    简介 ECMAScript 定义的对象中有两种特殊的属性, 这两种特殊的属性在你定义对象属性时就会赋予, 我们在必要时可以改写这两种特殊的属性让其属性的访问更加的合理化, 这两种特殊的属性称呼及作用如 ...

  4. 【vue.js权威指南】读书笔记(第二章)

    [第2章:数据绑定] 何为数据绑定?答曰:数据绑定就是将数据和视图相关联,当数据发生变化的时候,可以自动的来更新视图. 数据绑定的语法主要分为以下几个部分: 文本插值:文本插值可以说是最基本的形式了. ...

  5. ztree已拥有权限显示

    抄自 http://tieba.baidu.com/p/4394654036 $(document).ready(function () { var ID=@ViewBag.id; $.ajax({ ...

  6. vim - mark

    Using markshttp://vim.wikia.com/wiki/Using_marks1. There is no visible indication of where marks are ...

  7. 简单的js菜单

    <!DOCTYPE html> <html> <head> <title>hovertree</title><base target= ...

  8. java内存泄漏的定位与分析

    1.为什么会发生内存泄漏 java 如何检测内在泄漏呢?我们需要一些工具进行检测,并发现内存泄漏问题,不然很容易发生down机问题. 编写java程序最为方便的地方就是我们不需要管理内存的分配和释放, ...

  9. Repeater控件用法

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Repeater.aspx. ...

  10. JOIN,WHERE判断和ORDERBY排序

    MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小. 如果重复代码只是 ...