什么是聚类分析? 

聚类分析属于探索性的数据分析方法。通常,我们利用聚类分析将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。聚类结果要求组内对象相似性较高,组间对象相似性较低。在三国数据分析中,很多问题可以借助聚类分析来解决,比如三国人物身份划分。
聚类分析的基本过程是怎样的? 

  • 选择聚类变量

在分析三国人物身份的时候,我们会根据一定的假设,尽可能选取对角色身份有影响的变量,这些变量一般包含与身份密切相关的统率、武力、智力、政治、魅力、特技、枪兵、戟兵、弩兵、骑兵、兵器、水军等。但是,聚类分析过程对用于聚类的变量还有一定的要求:
这些变量在不同研究对象上的值具有明显差异;
这些变量之间不能存在高度相关。
因为,首先,用于聚类的变量数目不是越多越好,没有明显差异的变量对聚类没有起到实质意义,而且可能使结果产生偏差;其次,高度相关的变量相当于给这些变量进行了加权,等于放大了某方面因素对用户分类的作用。
识别合适的聚类变量的方法:
对变量做聚类分析,从聚得的各类中挑选出一个有代表性的变量;
做主成份分析或因子分析,产生新的变量作为聚类变量。

  • 聚类分析

相对于聚类前的准备工作,真正的执行过程显得异常简单。数据准备好后,丢到分析软件(通常是分析服务)里面跑一下,结果就出来了。
这里面遇到的一个问题是,把人物分成多少类合适?通常,可以结合几个标准综合判断:
1. 看拐点
2. 凭经验或人物特性判断
3. 在逻辑上能够清楚地解释

  • 找出各类用户的重要特征

确定一种分类方案之后,接下来,我们需要返回观察各类别三国人物在各个变量上的表现。根据差异检验的结果,我们以颜色区分出不同类用户在这项指标上的水平高低。

  • 聚类解释&命名

在理解和解释用户分类时,最好可以结合更多的数据,例如,三国志12数据等……最后,选取每一类别最明显的几个特征为其命名,就大功告成啦!

下面我们进入主题,同样我们继续利用上次的解决方案,依次步骤如下:





在挖掘模型中,主要是列出所建立的挖掘模型,也可以新增挖掘模型,并调整变量,变量使用情况包含Ignore(忽略)、Input(输入变量)、Predict(预测变量、输入变量)以及PredictOnly(预测变量),如图所示:


而在挖掘模型上点击鼠标右键,选择“设置算法参数”针对方法论的参数设置加以编辑,其中包含:
CLUSTER_COUNT:指定算法所要建立的聚类的近似数目。如果无法从数据中建立聚类的近似数目,算法便会尽可能建立聚类。若将CLUSTER_COUNT设置为0,则算法便会使用启发式决定所应建立的聚类数目,默认值为10。
CLUSTER_SEED:指定在模型建立的初始阶段,用于随机产生聚类的种子数。
CLUSTERING_METHOD:算法使用的聚类方法可以是可扩展的EM(1)、不可扩充的EM(2)、可扩充的K-means(3)或不可扩充的K-means(4)。
MAXIMUM_INPUT_ATTRIBUTE:指定在调用功能选项之前,算法可以处理输入属性的最大数目。将此值设置为0,会指定没有属性最大数目的限制。
MAXIMUM_STATES:指定算法所支持属性状态的最大数目。如果属性拥有的状态数目大于状态的最大数目,算法会使用属性最常用的状态并将其他的状态视为遗漏。
MINIMUM_SUPPORT:此参数指定每个聚类中的最小案例数目。
MODELLING_CARDINALITY:此参数指定聚类处理期间建构的范例模型数目。
SAMPLE_SIZE:指定如果CLUSTERING_METHOD参数设置为可扩充的聚类方法时,算法使用在每个行程上的案例数目。将SAMPLE_SIZE设置为0会导致整个数据集在单一进程中聚类,如此可能会造成内存和效率的问题。
STOPPING_TOLERANCE:指定用来决定何时到达聚合以及算法完成建立模型的值。当聚类概率的整体变更小于SHOPPING_TOLERANCE除以模型大小的比率时,就到达聚合。

挖掘模型查看器则是呈现此聚类分析结果,其中聚类图表则是表现各类关联性的强弱,对于数据的分布进一步加以了解。而在每一聚类结点上,点击右键,再出现的菜单上选择“钻取”,则可以浏览属于这一类的样本数据特征。

从“分类剖面图”了解因变量与自变量间的关联性强弱程度,如图

“分类特性”主要是呈现每一类的特性,见图


在“分类对比”上,主要就是呈现出两类间特性的比较,如图

参考文献:
Microsoft 聚类分析算法
http://msdn.microsoft.com/zh-cn/library/ms174879.aspx

《BI那点儿事》Microsoft 聚类分析算法——三国人物身份划分的更多相关文章

  1. Microsoft Naive Bayes 算法——三国人物身份划分

    Microsoft朴素贝叶斯是SSAS中最简单的算法,通常用作理解数据基本分组的起点.这类处理的一般特征就是分类.这个算法之所以称为“朴素”,是因为所有属性的重要性是一样的,没有谁比谁更高.贝叶斯之名 ...

  2. 大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法)

    原文:(原创)大数据时代:基于微软案例数据库数据挖掘知识点总结(Microsoft 聚类分析算法) 本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘 ...

  3. (转载)微软数据挖掘算法:Microsoft 聚类分析算法(2)

    介绍: Microsoft 聚类分析算法是一种"分段"或"聚类分析"算法,它遍历数据集中的事例,以将它们分组到包含相似特征的分类中. 在浏览数据.标识数据中的异 ...

  4. 《BI那点儿事—数据的艺术》目录索引

    原创·<BI那点儿事—数据的艺术>教程免费发布 各位园友,大家好,我是Bobby,在学习BI和开发的项目的过程中有一些感悟和想法,整理和编写了一些学习资料,本来只是内部学习使用,但为了方便 ...

  5. 《BI那点儿事》Microsoft 顺序分析和聚类分析算法

    Microsoft 顺序分析和聚类分析算法是由 Microsoft SQL Server Analysis Services 提供的一种顺序分析算法.您可以使用该算法来研究包含可通过下面的路径或“顺序 ...

  6. (转载)微软数据挖掘算法:Microsoft顺序分析和聚类分析算法(8)

    前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点 ...

  7. 《BI那点儿事》数据挖掘初探

    什么是数据挖掘? 数据挖掘(Data Mining),又称信息发掘(Knowledge Discovery),是用自动或半自动化的方法在数据中找到潜在的,有价值的信息和规则. 数据挖掘技术来源于数据库 ...

  8. (转载)微软数据挖掘算法:Microsoft 时序算法之结果预测及其彩票预测(6)

    前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用M ...

  9. (转载)微软数据挖掘算法:Microsoft 时序算法(5)

    前言 本篇文章同样是继续微软系列挖掘算法总结,前几篇主要是基于状态离散值或连续值进行推测和预测,所用的算法主要是三种:Microsoft决策树分析算法.Microsoft聚类分析算法.Microsof ...

随机推荐

  1. vim中输入tab符

    今天在写Makefile时各种出错.后来发现是all:的下一行,make前面必须是tab符,不能是空格. 但是vim中只要按tab就会自动转换成4个空格.平时编程需要,也不便把这个设置取消. 查了下, ...

  2. Entity Framework EF6使用 MySql创建数据库异常解决办法

    EF6使用MySQL数据库时,第一次创建数据库出现“Specified key was too long; max key length is 767 bytes”错误,解决办法请见以下连接. htt ...

  3. arm v5,v6,v7?

    http://blog.csdn.net/woshi_ziyu/article/details/7946862

  4. 网页版视频网站可以用html5来实现吗?

    当然可以用html5来实现视频网站,而且html5的诞生完全符合了百度优化,百度蜘蛛对这类的网站友好度非常高,会尽量会给高的权重,但是现在很多做 这类网站的开发还是比较习惯用websocket,这个东 ...

  5. 解剖SQLSERVER 完结篇 关于Internals Viewer源代码

    解剖SQLSERVER 完结篇 关于Internals Viewer源代码 大家可能都用过Internals Viewer这个软件 <查看SQLSERVER内部数据页面的小插件Internals ...

  6. Anciroid的IPC机制-Binder概述

    在Linux系统中,是以进程为单位分配和管理资源的.出于保护机制,一个进程不能直接访问另一个进程的资源,也就是说,进程之间互相封闭.但是,在一个复杂的应用系统中,通常会使用多个相关的进程来共同完成一项 ...

  7. DataTables 控件使用和心得 (1) - 入门

    什么是DataTables DataTables是一个基于HTML/CSS/JavaScript的前端列表组件. 基于JQuery 开源并且免费(除特殊支持服务) 主要特色: 高性能,响应式,功能完整 ...

  8. ILspy反编译工具

    简介 ILspy是一个开源的.net反编译软件,使用十分方便. 开发原因 之所以开发ILspy是因为Red Gate宣布免费版的.NET Reflector(同样是反编译软件)将会在2011年2月停止 ...

  9. 《Learninghard C#学习笔记》回馈网友,免费送书5本

    前言: 在博客园园友的大力支持下,本人的第一本书<Learninghard C#学习笔记>终于出版了. 这本书是本人学习C#的亲身经历,书籍内容都是本人学习过程中认为必须掌握的内容,完全无 ...

  10. Web Essentials之样式表StyleSheets

    返回Web Essentials功能目录 本篇目录 智能感知 视觉提示 验证 Web标准 转换器 Web Essentials中大多数的CSS功能也适用于LESS. 智能感知 生成供应商特定的属性 如 ...