I collect and make up this pseudocode from the book:

<<Introduction to the Design and Analysis of Algorithms_Second Edition>> _ Anany Levitin
Note that throughout the paper, we assume that inputs to algorithms fall within their specified ranges and hence require no verfication. When implementing algorithms as programs to be used in actual applications, you should provide such verfications.
About pseudocode: For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as for, if and while. As you saw later, we use an arrow <- for the assignment operation and two slashes // for comments. 

Algorithm SelectionSort(A[..n-])
// Sorts a given array by selection sort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in ascending order
for i <- to n- do
min <- i
for j <- i+ to n- do
if A[j] < A[min]
min <- j
swap A[i] and A[min]
Algorithm BubbleSort(A[..n-])
// Sorts a given array by bubble sort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in ascending order
for i <- to n- do
for j <- to n--i do
if A[j+] < A[j]
swap A[j] and A[j+]
Here is a pseudocode for the improved version of bubble sort:
Algorithm BetterBubbleSort(A[..n-])
// The algorithm sorts array A[0..n-1] by improved bubble sort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in ascending order
count <- n- // number of adjacent pairs to be compared
sflag <- true // swap flag
while sflage do
sflage <- false
for j <- to count- do
if A[j+] < A[j]
swap A[j] and A[j+]
sflag <- true
count <- count-


Here is a pseudocode of teh most straightforward version:
Algorithm BruteForcePolynomialEvaluation(P[..n], x)
// The algorithm computes the value of polynomial P at a given point x by the
//     "highest-to-lowest" brute-force algorithm
// Input: Array P[0..n] of the coefficients of a polynomial of degree n, stored from the lowest
//     to the highest and a number x
// Output: The value of the polynomial at the point x
p <- 0.0
for i <- n downto do
power <-
for j <- to i do
power <- power*x
p <- p + P[i]*power
return p
We can count just the number of multiplications in the algorithm's inner-most loop to find the algorithm's efficiency class: M(n) = n(n+1)/2 = O(n^2)
The above algorithm is very inefficient: we recompute powers of x again and again as if there were no relationship among them. Thus, the obvious improvement is based on computing consecutive powers more efficiently:
Algorithm BetterBruteForcePolynomialEvaluation(P[..n-], x)
// The algorithm computes the value of polynomial P at a given point x by the
//     "lowest-to-highest term" algorithm
// Input: Array P[0..n] of the coefficients of a polynomial of degree n, from the
//     lowest to the highest, and a number x
// Output: The value of the polynomial at the point x
p <- P[]; power <-
for i <- to n do
power <- power*x
p <- p + P[i]*power
return p
The number of multiplications here is M(n) = 2n, in another word, we have a linear algorithm
Algorithm SequentialSearch2(A[..n], K)
// Implements sequential search with a search key as a sentinel
// Input: An array A of n elements and a search key K
// Output: The index of the first element in A[0..n-1] whose value is equal
// to K or -1 if no such element if found
A[n] <- K
i <-
while A[i] ≠ K do
i <- i +
if i < n return i
else return - Algorithm BruteForceStringMatch(T[..n-], P[..m-])
// Implements brute-force string matching
// Input: An array T[0..n-1] of n characters representing a text and
// an array P[0..m-1] of m characters representing a pattern
// Output: The index of the first character in the text that starts a
// matching substring or -1 if the search is unsuccessful
for i <- to n-m do
j <-
while j < m and P[j] = T[i+j] do
j <- j+
if j = m return i
return -
Algorithm BruteForceClosestPoints(P)
// Finds two closest points in the plane by burte force
// Input: A list P of n(n ≥ 2) points P1 = (x1, x2),...,Pn = (xn, yn)
// Output: Indices index1 and index2 of the closest pair of points
dmin <- ∞
for i <- to n- do
for j <- i+ to n do
d <- sqrt((xi-xj) + (yi-yj)) // sqrt is the square root function. In fact, computing square roots can be avoided, the trick is to realize that we can simply ignore the square root function
if d < dmin
dmin <- d; index1 <- i; index2 <- j
return index1, index2
Let x1 < x2 < ... < xn be real numbers representing coordinates of n villages located along a straight road. A post office needs tobe built in one of these villages. Design an efficent algorithm to find the post offfice location minimizing  the maximum distance from a village to the post office.
Assuming that the points x1, x2, ... xn are given in increasing order, the answer is the point xi that is the closest to m = (x1 + xn) / 2, the middle point between x1 and xn. (The middle point woule be the obvious solution if the post-post office didn't have tobe at one of the given locations.) Indeed, if we put the post office at any location xi to the left of m, the longest distance froma village to the post office would be xn - xi; this distance is minimal for the rightmost among such points. If we put the post office at any location xi to the right of m, the longest distance from a village to the post office would be xi - x1; this distance isminimal for the leftmost among such points.
Algorithm PostOffice(P)
// Input: List P of n(n ≥ 2) point s x1, x2,..., xn in increasing order
// Output: Point xi that minimizes max(1≤j≤n)|xj - xi| among all x1,x2,...,xn
m <- (x1+xn) /
i <-
while xi < m do
i <- i+
if xi - x1 < xn - xi-
return xi
else return xi-
new words:
polynomial: 多项式 coefficient: 系数 inefficient: 低效的
sentinel: 哨兵 plane: 平面 coordinate: 坐标
village: 村庄 straight: 直; 直线 (END_XPJIANG)

Design and Analysis of Algorithms_Brute Froce的更多相关文章

  1. Design and Analysis of Algorithms_Decrease-and-Conquer

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  2. Design and Analysis of Algorithms_Divide-and-Conquer

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  3. Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  4. Design and Analysis of Algorithms_Introduction

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  5. 6.046 Design and Analysis of Algorithms

    课程信息 6.046 Design and Analysis of Algorithms

  6. 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)

    误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...

  7. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  8. Algorithms: Design and Analysis, Part 1 - Problem Set 1 - Question 5

    最后一个图像,用画图软件绘制了一下,自己的直接主观判断还是有些小问题的 注意:最后的灰色的线条会超过橙色的线条

  9. EE就业最好的方向是转CS,其次是VLSI/ASIC DESIGN & VERIFICATION

    Warald在2012年写过一篇文章<EE现在最好就业的方向是VLSI/ASIC DESIGN VERIFICATION>,三年过去了,很多学电子工程的同学想知道现在形势如何. 首先,按照 ...

随机推荐

  1. CodeForces 515B. Drazil and His Happy Friends

    B. Drazil and His Happy Friends time limit per test 2 seconds memory limit per test 256 megabytes in ...

  2. 2016 ccpc 网络选拔赛 F. Robots

    Robots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  3. Python for Infomatics 第12章 网络编程二(译)

    注:文章原文为Dr. Charles Severance 的 <Python for Informatics>.文中代码用3.4版改写,并在本机测试通过. 12.3 用HTTP协议获取一张 ...

  4. 谓词 (NSPredicate)使用详情

    谓词 更加详细:http://blog.csdn.net/ztp800201/article/details/8116081 //判断是否满足条件 第一种 判断一个数组(array)中满足条件的 NS ...

  5. CSS常用属性

    //边界线 border: 1px solid #E4E4E4; //绝对 定位 position: absolute; //相对定位 position: relative; //超出部分隐藏 ove ...

  6. ZeroMQ接口函数之 :zmq_ctx_new – 创建一个新的ZMQ 环境上下文

    ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_ctx_new zmq_ctx_new(3)               ØMQ Manual - ØMQ/3.2 ...

  7. Mongoose 的实例方法中访问静态方法

    方法比较简单,也比较粗糙和丑陋,就是通过构造函数来访问静态方法,大致如下: 123456789 WorkSpaceSchema.methods.getPrice = function(startTim ...

  8. javascript 学习之自定义滚动条加滚轮事件

    要自己写一个自定义滚动条加上滚轮事件,之前的没有滚轮事件不完整,今天整理了一个. 1.滚轮事件是不兼容的,firefox中是必需要用事件绑定的添加,用的DOMMouseScroll,当滚动鼠标的时候, ...

  9. webservice总结

    webservice xml(DTD,Schema,Stax) SOAP jax-ws (java api xml webservice) 契约优先的开发模式 CXF Rest 异构平台之间的交互(. ...

  10. 安卓中級教程(3):ScrollView

    以上是scrollview的圖例,可見srollview是一種滑動功能的控件,亦是非常常見的控件. 一般寫法如下: package com.mycompany.viewscroller; import ...