I collect and make up this pseudocode from the book:

<<Introduction to the Design and Analysis of Algorithms_Second Edition>> _ Anany Levitin
Note that throughout the paper, we assume that inputs to algorithms fall within their specified ranges and hence require no verfication. When implementing algorithms as programs to be used in actual applications, you should provide such verfications.
About pseudocode: For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as for, if and while. As you saw later, we use an arrow <- for the assignment operation and two slashes // for comments. 

Algorithm SelectionSort(A[..n-])
// Sorts a given array by selection sort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in ascending order
for i <- to n- do
min <- i
for j <- i+ to n- do
if A[j] < A[min]
min <- j
swap A[i] and A[min]
Algorithm BubbleSort(A[..n-])
// Sorts a given array by bubble sort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in ascending order
for i <- to n- do
for j <- to n--i do
if A[j+] < A[j]
swap A[j] and A[j+]
Here is a pseudocode for the improved version of bubble sort:
Algorithm BetterBubbleSort(A[..n-])
// The algorithm sorts array A[0..n-1] by improved bubble sort
// Input: An array A[0..n-1] of orderable elements
// Output: Array A[0..n-1] sorted in ascending order
count <- n- // number of adjacent pairs to be compared
sflag <- true // swap flag
while sflage do
sflage <- false
for j <- to count- do
if A[j+] < A[j]
swap A[j] and A[j+]
sflag <- true
count <- count-


Here is a pseudocode of teh most straightforward version:
Algorithm BruteForcePolynomialEvaluation(P[..n], x)
// The algorithm computes the value of polynomial P at a given point x by the
//     "highest-to-lowest" brute-force algorithm
// Input: Array P[0..n] of the coefficients of a polynomial of degree n, stored from the lowest
//     to the highest and a number x
// Output: The value of the polynomial at the point x
p <- 0.0
for i <- n downto do
power <-
for j <- to i do
power <- power*x
p <- p + P[i]*power
return p
We can count just the number of multiplications in the algorithm's inner-most loop to find the algorithm's efficiency class: M(n) = n(n+1)/2 = O(n^2)
The above algorithm is very inefficient: we recompute powers of x again and again as if there were no relationship among them. Thus, the obvious improvement is based on computing consecutive powers more efficiently:
Algorithm BetterBruteForcePolynomialEvaluation(P[..n-], x)
// The algorithm computes the value of polynomial P at a given point x by the
//     "lowest-to-highest term" algorithm
// Input: Array P[0..n] of the coefficients of a polynomial of degree n, from the
//     lowest to the highest, and a number x
// Output: The value of the polynomial at the point x
p <- P[]; power <-
for i <- to n do
power <- power*x
p <- p + P[i]*power
return p
The number of multiplications here is M(n) = 2n, in another word, we have a linear algorithm
Algorithm SequentialSearch2(A[..n], K)
// Implements sequential search with a search key as a sentinel
// Input: An array A of n elements and a search key K
// Output: The index of the first element in A[0..n-1] whose value is equal
// to K or -1 if no such element if found
A[n] <- K
i <-
while A[i] ≠ K do
i <- i +
if i < n return i
else return - Algorithm BruteForceStringMatch(T[..n-], P[..m-])
// Implements brute-force string matching
// Input: An array T[0..n-1] of n characters representing a text and
// an array P[0..m-1] of m characters representing a pattern
// Output: The index of the first character in the text that starts a
// matching substring or -1 if the search is unsuccessful
for i <- to n-m do
j <-
while j < m and P[j] = T[i+j] do
j <- j+
if j = m return i
return -
Algorithm BruteForceClosestPoints(P)
// Finds two closest points in the plane by burte force
// Input: A list P of n(n ≥ 2) points P1 = (x1, x2),...,Pn = (xn, yn)
// Output: Indices index1 and index2 of the closest pair of points
dmin <- ∞
for i <- to n- do
for j <- i+ to n do
d <- sqrt((xi-xj) + (yi-yj)) // sqrt is the square root function. In fact, computing square roots can be avoided, the trick is to realize that we can simply ignore the square root function
if d < dmin
dmin <- d; index1 <- i; index2 <- j
return index1, index2
Let x1 < x2 < ... < xn be real numbers representing coordinates of n villages located along a straight road. A post office needs tobe built in one of these villages. Design an efficent algorithm to find the post offfice location minimizing  the maximum distance from a village to the post office.
Assuming that the points x1, x2, ... xn are given in increasing order, the answer is the point xi that is the closest to m = (x1 + xn) / 2, the middle point between x1 and xn. (The middle point woule be the obvious solution if the post-post office didn't have tobe at one of the given locations.) Indeed, if we put the post office at any location xi to the left of m, the longest distance froma village to the post office would be xn - xi; this distance is minimal for the rightmost among such points. If we put the post office at any location xi to the right of m, the longest distance from a village to the post office would be xi - x1; this distance isminimal for the leftmost among such points.
Algorithm PostOffice(P)
// Input: List P of n(n ≥ 2) point s x1, x2,..., xn in increasing order
// Output: Point xi that minimizes max(1≤j≤n)|xj - xi| among all x1,x2,...,xn
m <- (x1+xn) /
i <-
while xi < m do
i <- i+
if xi - x1 < xn - xi-
return xi
else return xi-
new words:
polynomial: 多项式 coefficient: 系数 inefficient: 低效的
sentinel: 哨兵 plane: 平面 coordinate: 坐标
village: 村庄 straight: 直; 直线 (END_XPJIANG)

Design and Analysis of Algorithms_Brute Froce的更多相关文章

  1. Design and Analysis of Algorithms_Decrease-and-Conquer

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  2. Design and Analysis of Algorithms_Divide-and-Conquer

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  3. Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  4. Design and Analysis of Algorithms_Introduction

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  5. 6.046 Design and Analysis of Algorithms

    课程信息 6.046 Design and Analysis of Algorithms

  6. 斯坦福大学公开课机器学习: machine learning system design | error analysis(误差分析:检验算法是否有高偏差和高方差)

    误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机 ...

  7. Algorithms: Design and Analysis, Part 1 - Programming Assignment #1

    自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...

  8. Algorithms: Design and Analysis, Part 1 - Problem Set 1 - Question 5

    最后一个图像,用画图软件绘制了一下,自己的直接主观判断还是有些小问题的 注意:最后的灰色的线条会超过橙色的线条

  9. EE就业最好的方向是转CS,其次是VLSI/ASIC DESIGN & VERIFICATION

    Warald在2012年写过一篇文章<EE现在最好就业的方向是VLSI/ASIC DESIGN VERIFICATION>,三年过去了,很多学电子工程的同学想知道现在形势如何. 首先,按照 ...

随机推荐

  1. C#delegate委托

    类似函数,却没有语句体. using System; using System.Collections.Generic; using System.Linq; using System.Text; u ...

  2. MySQL存储过程与存储函数的区别

    语法定义上的区别就不说了,说一下其他的.如果有不正确的地方,还请大家指正. 1.总述存储函数和存储过程统称为存储例程(stored routine).两者的定义语法很相似,但却是不同的内容.存储函数限 ...

  3. 关于MFi认证你所必须要知道的事情

    MFiLogo 前面我写了一篇文章<iOS App连接外设的几种方式>,其中EAP和NCM是都需要做MFi认证.对于苹果的MFI认证,对iOS开发的同学来说其实是一个比较陌生并且繁琐的to ...

  4. 尝试封装适用于权限管理的通用API

    谈谈我对权限系统的简单理解 最近一段时间在研究权限系统,在园子里看到个很牛逼的开源的基于DDD-Lite的权限管理系统,并有幸加入了作者的QQ群,呵呵,受到了很大的影响.对于权限管理我有我自己的一些简 ...

  5. MySQL导出数据

    1.MySQL导出数据库 只导出数据库结构:选中数据库-->右键—>数据传输—>高级—>取消勾选记录选项.

  6. UI测试测试分析

    解析:jQuery easyUI是基于jQuery框架在使用之前应该先引入jquery框架否则jQuery easyUI 将失效故D错误 解析: JQuery UI下的menu插件的使用,menu提供 ...

  7. <二>JDBC_通过ResultSet执行查询操作

    一.ResultSet: 结果集. 封装了使用 JDBC 进行查询的结果.  1. 调用 Statement 对象的 executeQuery(sql) 可以得到结果集. 2. ResultSet 返 ...

  8. 设计模式之六大原则——接口隔离原则(ISP)

    设计模式之六大原则——接口隔离原则(ISP)  转载于:http://www.cnblogs.com/muzongyan/archive/2010/08/04/1792528.html 接口隔离原则 ...

  9. php实现网页trace方法

    // 记录内存初始使用和开始时间,在系统的入口记录 $beginTime= microtime(TRUE); $start_memory = memory_get_usage(); //die; ec ...

  10. elasticsearch之节点重启

    Elasticsearch节点重启时背后发生的故事有哪些,应该注意哪些配置内容,本篇文章做一个简单的探讨. 节点离开 在elasticsearch集群中,假设NodeA因为种种原因退出集群,在Node ...