我一直在不断的提示大家:FP就是Monadic Programming,是一种特殊的编程风格。在我们熟悉的数据库编程领域能不能实现FP风格呢?我们先设计一些示范例子来分析一下惯用的数据库编程过程:

 import scalaz._
import Scalaz._
import scala.language.higherKinds
import scala.language.implicitConversions
import com.jolbox.bonecp.BoneCP
import com.jolbox.bonecp.BoneCPConfig
import java.sql.Connection
import java.sql.ResultSet object freedbtxns {
def getTutorId(courseId: Int, conn: Connection): Int = {
val sqlString = "select TUTOR from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getInt("ID")
}
def getTutorPay(courseId: Int, conn: Connection): Double = {
val sqlString = "select PAYAMT from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getDouble("PAYAMT")
}
def getStudentFee(courseId: Int, conn: Connection): Double = {
val sqlString = "select FEEAMT from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getDouble("FEEAMT")
}
def updateTutorPay(tutorId: Int, plusAmt: Double, conn: Connection): Unit = {
val sqlString = "update TUTORS set PAYABLE = PAYABLE+"+plusAmt.toString + " where ID=" + tutorId
conn.createStatement().executeUpdate(sqlString)
}
def updateStudentFee(studentId: Int, plusAmt: Double, conn: Connection): Unit = {
val sqlString = "update STUDENTS set DUEAMT = DUEAMT+"+plusAmt.toString + " where ID=" + studentId
conn.createStatement().executeUpdate(sqlString)
}
def findEmptySeat(courseId: Int, conn: Connection): Int = {
val sqlString = "select ID from SEATS where OCCUPIED='T' AND ID=" + courseId
conn.createStatement().executeQuery(sqlString).getInt("ID")
}
def updateSeatsStatus(seatId: Int, taken: Boolean, conn: Connection): Unit = {
val sqlString = "update SEATS set OCCUPIED ='"+taken.toString.toUpperCase.head + "' where ID=" + seatId
conn.createStatement().executeUpdate(sqlString)
}

我这里模拟了一个培训学校内的一些业务。上面设计的是一些基本函数,可以分别对学员、导师、座位进行查询和更新。如果我们需要把更新工作放入事务处理(transaction)内的话我们可以这样做:

 def updateStudent(studentId: Int, courseId: Int): Unit = {
val config = new BoneCPConfig()
val bonecp = new BoneCP(config)
val conn = bonecp.getConnection()
conn.setReadOnly(false)
conn.setAutoCommit(false)
conn.rollback()
try {
val fee = getStudentFee(courseId, conn)
updateStudentFee(studentId,fee, conn)
conn.commit()
} catch {
case (e:Exception) => conn.rollback()
} finally {
conn.close()
}
}
def updateStudentAndSeat(studentId: Int, courseId: Int): Unit = {
val config = new BoneCPConfig()
val bonecp = new BoneCP(config)
val conn = bonecp.getConnection()
conn.setReadOnly(false)
conn.setAutoCommit(false)
conn.rollback()
try {
val fee = getStudentFee(courseId, conn)
updateStudentFee(studentId,fee, conn)
val seatId = findEmptySeat(courseId, conn)
updateSeatsStatus(seatId, true, conn)
conn.commit()
} catch {
case (e:Exception) => conn.rollback()
} finally {
conn.close()
}
}

马上可以发现在我们对这些函数在事务处理内进行组合使用时我们必须重新对事务处理进行设置,无法实现真正意义上的函数组合。如果我们认可FP风格的话,这里起码有两项弊处:一是源代码增加了大量的铺垫(boilerplate code),重复事务处理设置、二是每个更新函数都会产生副作用,换句话说就是这里那里都会有副作用影响,很难控制,这样就增加了程序的复杂程度,造成代码分析的困难。

我们希望达到的目标:

 /*
def updateStudentAndSeat(studentId: Int): program {
// findEmptySeat
// updateStudentFee
// updateSeatStatus
} def runDBTxn(prg: program) {
//conn= getConnection
//try
// run(pre)
//commit
//catch
//rollback
}
runDBTxn(updateStudent)
runDBTxn(updateStudentAndSeat)
runDBTxn(updateSeatStatus)
*/

我们只在一个地方设置和运行事务处理。我们希望能把不同的program传入runDBTxn去运算。这不就是Free Monad的编程、运算关注分离模式嘛。那我们就试着用Free Monad来提供数据库事务处理支持。按上篇讨论的设计流程我们先设计ADT:

 case class SqlOp[A](run: Connection => A)

模拟sql指令很简单,两种情况:query或者update。两者都可以用函数run表示:传入Connection,返回结果A,A有可能是Unit。要成为Free Monad就必须先获取SqlOp的Functor实例:

 case class SqlOp[A](run: Connection => A)
implicit val sqlOpFunctor = new Functor[SqlOp] {
def map[A,B](sa: SqlOp[A])(f: A => B): SqlOp[B] =
SqlOp{ (conn: Connection) => f(sa.run(conn)) }
}

基本功能的sql操作函数及升格Free:

 type Sql[A] = Free[SqlOp,A]
def getTutorId(courseId: Int): Sql[Int] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select TUTOR from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getInt("ID")
}
}) def getTutorPay(courseId: Int): Sql[Double] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select PAYAMT from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getDouble("PAYAMT")
}
})
def getStudentFee(courseId: Int): Sql[Double] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select FEEAMT from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getDouble("FEEAMT")
}
})
def updateTutorPay(tutorId: Int, plusAmt: Double): Sql[Unit] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "update TUTORS set PAYABLE = PAYABLE+"+plusAmt.toString + " where ID=" + tutorId
conn.createStatement().executeUpdate(sqlString)
}
})
def updateStudentFee(studentId: Int, plusAmt: Double): Sql[Unit] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "update STUDENTS set DUEAMT = DUEAMT+"+plusAmt.toString + " where ID=" + studentId
conn.createStatement().executeUpdate(sqlString)
}
})
def findEmptySeat(courseId: Int): Sql[Int] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select ID from SEATS where OCCUPIED='T' AND ID=" + courseId
conn.createStatement().executeQuery(sqlString).getInt("ID")
}
})
def updateSeatsStatus(seatId: Int, taken: Boolean): Sql[Unit] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "update SEATS set OCCUPIED ='"+taken.toString.toUpperCase.head + "' where ID=" + seatId
conn.createStatement().executeUpdate(sqlString)
}
})

我们现在可以用这些升格成Free的函数来建设AST示范例子:

   def takeSeat(courseId: Int): Sql[Unit] = for {
emptySeat <- findEmptySeat(courseId)
_ <- updateSeatsStatus(emptySeat, true)
} yield()
def addCourse(studentId: Int, courseId: Int): Sql[Unit] = for {
fee <- getStudentFee(courseId)
pay <- getTutorPay(courseId)
tutorId <- getTutorId(courseId)
_ <- updateStudentFee(studentId, fee)
_ <- updateTutorPay(tutorId, pay)
_ <- takeSeat(courseId)
} yield()

addCourse对基本函数进行了组合,又调用了已经组合过一次的takeSeat,证明AST可以实现高度的函数组合。

下面示范实现相关的Interpreter:

   def runTransactionImpl[A](conn: Connection, ast: Sql[A]): A =
ast.resume.fold ({
case x: SqlOp[Sql[A]] => runTransactionImpl(conn, x.run(conn))
},
(a: A) => a
)

我们需要一个通用的事务处理方法:

   def runTransaction[A](ast: Sql[A]): Exception \/ A = {
val config = new BoneCPConfig()
val bonecp = new BoneCP(config)
val conn = bonecp.getConnection()
conn.setReadOnly(false)
conn.setAutoCommit(false)
conn.rollback()
try {
val result: A = runTransactionImpl(conn, ast)
result.right[Exception]
} catch {
case e: Exception => e.left[A]
} finally {
conn.close
}
}

这样,我们可以在一个地方使用事务处理来运算任何事先设计的AST。

我们可以用不同的方法来实现Interpreter。下面就是用Free.foldMap来运算AST的示范。由于我们需要注入Connection,所以采用了Sql to State的自然转换(natural transformation):

   type SqlState[A] = State[Connection, A]
object SqlToState extends (SqlOp ~> SqlState) {
def apply[A](sa: SqlOp[A]): SqlState[A] = sa match {
case SqlOp(f) => State {
conn => (conn,f(conn))
}
}
}
def runTransactionImplState[A](conn: Connection, ast: Sql[A]) =
ast.foldMap(SqlToState).run(conn)

下面是这个用Free来实现FP风格数据库事务处理的完整示范代码:

 import scalaz._
import Scalaz._
import scala.language.higherKinds
import scala.language.implicitConversions
import com.jolbox.bonecp.BoneCP
import com.jolbox.bonecp.BoneCPConfig
import java.sql.Connection
import java.sql.ResultSet object freedbtxns { case class SqlOp[A](run: Connection => A)
implicit val sqlOpFunctor = new Functor[SqlOp] {
def map[A,B](sa: SqlOp[A])(f: A => B): SqlOp[B] =
SqlOp{ (conn: Connection) => f(sa.run(conn)) }
}
type Sql[A] = Free[SqlOp,A]
def getTutorId(courseId: Int): Sql[Int] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select TUTOR from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getInt("ID")
}
}) def getTutorPay(courseId: Int): Sql[Double] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select PAYAMT from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getDouble("PAYAMT")
}
})
def getStudentFee(courseId: Int): Sql[Double] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select FEEAMT from COURSES where ID=" + courseId
conn.createStatement().executeQuery(sqlString).getDouble("FEEAMT")
}
})
def updateTutorPay(tutorId: Int, plusAmt: Double): Sql[Unit] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "update TUTORS set PAYABLE = PAYABLE+"+plusAmt.toString + " where ID=" + tutorId
conn.createStatement().executeUpdate(sqlString)
}
})
def updateStudentFee(studentId: Int, plusAmt: Double): Sql[Unit] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "update STUDENTS set DUEAMT = DUEAMT+"+plusAmt.toString + " where ID=" + studentId
conn.createStatement().executeUpdate(sqlString)
}
})
def findEmptySeat(courseId: Int): Sql[Int] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "select ID from SEATS where OCCUPIED='T' AND ID=" + courseId
conn.createStatement().executeQuery(sqlString).getInt("ID")
}
})
def updateSeatsStatus(seatId: Int, taken: Boolean): Sql[Unit] =
Free.liftF(SqlOp{
(conn: Connection) => {
val sqlString = "update SEATS set OCCUPIED ='"+taken.toString.toUpperCase.head + "' where ID=" + seatId
conn.createStatement().executeUpdate(sqlString)
}
}) def takeSeat(courseId: Int): Sql[Unit] = for {
emptySeat <- findEmptySeat(courseId)
_ <- updateSeatsStatus(emptySeat, true)
} yield()
def addCourse(studentId: Int, courseId: Int): Sql[Unit] = for {
fee <- getStudentFee(courseId)
pay <- getTutorPay(courseId)
tutorId <- getTutorId(courseId)
_ <- updateStudentFee(studentId, fee)
_ <- updateTutorPay(tutorId, pay)
_ <- takeSeat(courseId)
} yield() def runTransactionImpl[A](conn: Connection, ast: Sql[A]): A =
ast.resume.fold ({
case x: SqlOp[Sql[A]] => runTransactionImpl(conn, x.run(conn))
},
(a: A) => a
)
def runTransaction[A](ast: Sql[A]): Exception \/ A = {
val config = new BoneCPConfig()
val bonecp = new BoneCP(config)
val conn = bonecp.getConnection()
conn.setReadOnly(false)
conn.setAutoCommit(false)
conn.rollback()
try {
val result: A = runTransactionImpl(conn, ast)
result.right[Exception]
} catch {
case e: Exception => e.left[A]
} finally {
conn.close
}
}
}

Scalaz(37)- Free :实践-DB Transaction free style的更多相关文章

  1. 在 laravel 的 DB::transaction 中,为外部变量赋值

    例如,我想在 laravel 的事务中,对某个外部变量赋值,然后在后续的逻辑中判断该变量的属性 $user = null; // init DB::transaction(function() use ...

  2. Django深入----django.db.transaction

    django 的事务: transaction.py atomic---原子性 def atomic(using=None, savepoint=True): # Bare decorator: @a ...

  3. laravel transaction : laravel 的事务是不支持eloquent的, 要用DB::的方式

    数据库事务处理# 你可以使用 transaction 方法,去执行一组数据库事务处理的操作: DB::transaction(function() { DB::table('users')->u ...

  4. js-新兴的API,最佳实践,离线应用于客户端存储

    离线应用于客户端存储: 1.离线检测:online以及offline事件,都是在window对象上触发 navigator.online为true的时候是表示设备能够上网 2.使用一个描述文件(man ...

  5. [PWA] 13. New db and object store

    Create a db: import idb from 'idb'; var dbPromise = idb.open('test-db', 2, function (upgradeDb) { sw ...

  6. File already exists: filesystem '/path/file', transaction svn常见错误解决方法

    前言 多人任务基本都会用到SVN,于是提交的时候如果不先更新在提交或者操作顺序不对,会经常出现错误,其中File already exists: filesystem这个就是个常见问题,上网找了半天没 ...

  7. yii源码三 -- db

    <AR> CActiveRecord:path:/framework/db/ar/CActiveRecord.phpoverview:is the base class for class ...

  8. The transaction associated with this command is not the connection's active transaction

    The fix is fairly simple: if you want a Dapper query to participate in a connection, explicitly deno ...

  9. PhoneGap下Web SQL实践

    HTML5里的Web SQL数据库,内置了SQLite数据库, 对数据库的操作使用executeSql执行增删改查 1. 创建数据库 function creatDatabase(){ db = op ...

随机推荐

  1. Atitit apache 和guava的反射工具

    Atitit apache 和guava的反射工具 apache1 Spring的反射工具类 ReflectionUtils1 Guava 反射工具2 apache  34             7 ...

  2. ui-router带参数的ui-sref配置

    ui-router带参数的ui-sref配置 路由 .state('app.user_edit', { url:'user/userid/:userid', templateUrl: 'compone ...

  3. 关于OpenVPN的入门使用

    关于OpenVPN的入门使用 1.1源代码编译安装的初步了解 1.2 安装OpenVPN 1.3 生成证书.服务器端证书.客户端证书 1.4 关于server.ovpm & client.ov ...

  4. 快速入门系列--MVC--04模型

    model元数据 闲来继续学习蒋金楠大师的ASP.NET MVC框架揭秘一书,当前主要阅读的内容是Model元数据的解析,即使是阅读完的现在,仍然有不少细节不是特别明白.好在这部分内容主要是关于Raz ...

  5. python 反射的使用

    反射这个功能在很多编程语言中都有,在Python中自然也不例外.其实编程语言中的很多功能都能用简单的代码来验证. 在code代码之前,先简单的了解下反射的几个属性. hasattr(obj,name_ ...

  6. 微软BI 之SSIS 系列 - 使用 SQL Profilling Task (数据探测) 检测数据源数据

    开篇介绍 SQL Profilling Task 可能我们很多人都没有在 SSIS 中真正使用过,所以对于这个控件的用法可能也不太了解.那我们换一个讲法,假设我们有这样的一个需求 - 需要对数据库表中 ...

  7. WPF自定义控件与样式(7)-列表控件DataGrid与ListView自定义样式

    一.前言 申明:WPF自定义控件与样式是一个系列文章,前后是有些关联的,但大多是按照由简到繁的顺序逐步发布的等,若有不明白的地方可以参考本系列前面的文章,文末附有部分文章链接. 本文主要内容: Dat ...

  8. 《BI那点儿事》Microsoft 聚类分析算法——三国人物身份划分

    什么是聚类分析? 聚类分析属于探索性的数据分析方法.通常,我们利用聚类分析将看似无序的对象进行分组.归类,以达到更好地理解研究对象的目的.聚类结果要求组内对象相似性较高,组间对象相似性较低.在三国数据 ...

  9. 《Administrator's Guide》之Managing Memory

    Automatic Memory Management 1. 如果要启动Automatic Memory Management,如何确定MEMORY_TARGET的值呢? 1> 在SQL*Plu ...

  10. Deep learning:四十八(Contractive AutoEncoder简单理解)

    Contractive autoencoder是autoencoder的一个变种,其实就是在autoencoder上加入了一个规则项,它简称CAE(对应中文翻译为?).通常情况下,对权值进行惩罚后的a ...