[UOJ 41]【清华集训2014】矩阵变换
Description
给出一个 $N$ 行 $M$ 列的矩阵A, 保证满足以下性质:
- $M > N$。
- 矩阵中每个数都是 $[0, N]$ 中的自然数。
- 每行中, $[1, N]$ 中每个自然数都恰好出现一次。这意味着每行中 $0$ 恰好出现 $M - N$ 次。
- 每列中,$[1, N]$ 中每个自然数至多出现一次。
现在我们要在每行中选取一个非零数,并把这个数之后的数赋值为这个数。我们希望保持上面的性质4,即每列中,$[1, N]$ 中每个自然数仍然至多出现一次。
Input
第一行一个正整数 $T$,表示数据组数。
后面包含 $T$ 组数据,各组数据之间无空行。每组数据以两个正整数 $N, M$ 开始,接下来 $N$ 行,每行 $M$ 个用空格隔开的整数,意义如题所述。
Output
对于每组数据输出一行。如果有解,则输出 $N$ 个整数,依次表示每一行取的数是多少。(这应该是一个 $1$ 到 $N$ 的排列)如果无解,则输出任意卖萌表情。
Sample Input
2
5 10
0 1 0 2 3 0 0 4 0 5
2 0 3 0 0 1 0 5 4 0
4 2 1 0 0 0 3 0 5 0
0 3 0 4 0 5 0 1 2 0
1 0 0 3 2 4 5 0 0 0
5 10
0 1 0 2 3 0 0 4 0 5
2 0 3 0 0 1 0 5 4 0
4 2 1 0 0 0 3 0 5 0
0 3 0 4 0 5 0 1 2 0
1 0 0 3 2 4 5 0 0 0
Sample Output
4 5 3 1 2
5 4 3 1 2
Sample Explanation
两组输入数据是相同的。由于结果不唯一,你可以给出任意一组合法答案。
Hint
对于 20% 的数据,$M < 8, T < 8$。
对于 40% 的数据,$N < 8, T < 8$。
对于 100% 的数据,$N < 200, M < 400, T < 50$。
卖萌表情包括但不限于“\(^o^)/” (不含引号).
由于输入数据较大, 请自行优化输入方法.
时间限制:$1\texttt{s}$
空间限制:$512\texttt{MB}$
题解
稳定婚姻问题。
首先值得肯定的是每一行所选的数不能相同,那么现在就相当于 $n$ 个行匹配 $n$ 个数。
那么什么是不稳定的婚姻?如果假设数 $x$ 在第 $i$ 行选中的数之前(确保 $x$ 没有被选中的数删去),又同时选中 $x$ 的 $j$ 行中 $x$ 位置比 $i$ 行中 $x$ 位置靠前。显然这个时候是不合法的。但只要我们选第 $i$ 行的 $x$ ,再作调整就能得到合法的解。
所以归纳得出的结论就是:在一行中,偏好选在靠前面的数字。而对于每个数字,偏好其在行中的位置靠后的行。
那么就可以跑 $Gale-Shapley$ 。
//It is made by Awson on 2018.1.18
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
using namespace std;
const int N = ;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int n, m;
int alike[N+][N+], blike[N+][N+];
int achoice[N+], bchoice[N+];
queue<int>Q; void work() {
read(n), read(m);
for (int i = ; i <= n; i++)
for (int j = , tot = , x = ; j <= m; j++, x = ) {
read(x); if (x) alike[i][++tot] = x, blike[x][i] = j;
}
for (int i = ; i <= n; i++) blike[i][n+] = , bchoice[i] = n+, achoice[i] = , Q.push(i);
while (!Q.empty()) {
int a = Q.front(), b = alike[a][achoice[a]];
if (blike[b][bchoice[b]] < blike[b][a]) {
Q.pop();
if (bchoice[b] != n+) {
achoice[bchoice[b]]++;
Q.push(bchoice[b]);
}
bchoice[b] = a;
}else achoice[a]++;
}
for (int i = ; i <= n; i++) write(alike[i][achoice[i]]), putchar(' ');
}
int main() {
int t; read(t);
while (t--) {work(); if (t) putchar('\n'); }
return ;
}
[UOJ 41]【清华集训2014】矩阵变换的更多相关文章
- UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)
题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...
- bzoj 3816&&uoj #41. [清华集训2014]矩阵变换
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...
- [BZOJ3816][清华集训2014]矩阵变换(稳定婚姻问题)
3816: 矩阵变换 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 803 Solved: 578[Submit][Status][Discuss] ...
- uoj #46[清华集训2014]玄学
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
随机推荐
- vim的配置
修改根目录下.vimrc文件: 1.设定解码,支持中文 set fileencodings=utf-8,ucs-born,gb18030,gbk,gb2312,cp936 set termencodi ...
- Beta冲刺 第五天
Beta冲刺 第五天 1. 昨天的困难 1.昨天的困难主要是在类的整理上,一些逻辑理不清,也有一些类写的太绝对了,扩展性就不那么好了,所以,昨天的困难就是在重构上. 页面结构太凌乱,之前没有统筹好具体 ...
- Alpha冲刺第一天
Alpha冲刺第一天 站立式会议 项目进展 项目的第一天,主要工作是对项目的开发进行规划,以及将规划的成果转化为燃尽图与博客文章.依据项目需求分析报告与开题报告中已经完成的设计任务和项目规划,我们将系 ...
- 《Language Implementation Patterns》之 强类型规则
语句的语义取决于其语法结构和相关符号:前者说明了了要"做什么",后者说明了操作"什么对象".所以即使语法结构正确的,如果被操作的对象不合法,语句也是不合法的.语 ...
- 详谈C++虚函数表那回事(多重继承关系)
上一篇说了一般继承,也就是单继承的虚函数表,接下来说说多重继承的虚函数表: 1.无虚函数覆盖的多重继承: 代码: #pragma once //无覆盖,多重继承 class Base1 { publi ...
- 深入分析Java Web中的编码问题
编码问题一直困扰着我,每次遇到乱码或者编码问题,网上一查,问题解决了,但是实际的原理并没有搞懂,每次遇到,都是什么头疼. 决定彻彻底底的一次性解决编码问题. 1.为什么要编码 计算机的基本单元是字节, ...
- JavaSE阶段初期的一些问题
对于如下问题1:编译阶段Demo1会报错,Demo2不会报错. class Demo1{ int i; i = 0; } class Demo2{ int i = 0; } 事实上,在java中 ...
- Spring邮件发送1
注意:邮件发送code中,邮件服务器的申请和配置是比较主要的一个环节,博主这里用的是QQ的邮件服务器.有需要的可以谷歌.百度查下如何开通. 今天看了下Spring的官方文档的邮件发送这一章节.在这里记 ...
- Python内置函数(32)——all
英文文档: all(iterable) Return True if all elements of the iterable are true (or if the iterable is empt ...
- Django之中间件
中间件简介 什么是中间件 中间件是一个用来处理Django的请求和响应的框架级别的钩子.它是一个轻量.低级别的插件系统,用于在全局范围内改变Django的输入和输出.每个中间件组件都负责做一些特定的功 ...