[NOIp 2016]愤怒的小鸟
Description
Input
Output
Sample Input
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
Sample Output
1
1
Sample Explanation
HINT
题解
暴力做法:
1、因为三点可以确定一条抛物线,又必过原点,那么只需要再找两个点就能确定一条抛物线;
2、枚举点对,求出抛物线方程,注意两点的$x$坐标不能相等,抛物线的二次项系数必须小于$0$;
3、删掉在抛物线上的点,进入下一层继续枚举。
60分算法:
1、如果使用暴力,我们会删掉一些线段进入下一个状态,一个状态是指现在平面内还剩多少个点;
2、注意到一点:从当前状态无论以什么方式删点,均不会影响之前状态到当前状态的决策。也就是说:在之前的状态时,我们只需要考虑,怎样删点来到达当前状态即可,而不用管当前状态下如何删点来到达下一个状态;
3、这具备明显的无后效性,我们用一个二进制数$S$来表示一个状态,若$S$的第$i$位为$1$,则表示第$(i+1)$个点还存在于平面内,那么状态压缩的$DP$可以解决;
4、同样对于每个状态枚举抛物线即可。
100分算法:
1、平面内有$n$个点,共$2^n$个状态,每次枚举抛物线还要检查每个点,需要$O(n^3)$复杂度;
2、每次都要枚举抛物线经过的两个点,即抛物线必定会删去的两个点。既然我们的最终目标是将当前状态所有的点都删去,那么可以知道,删掉所有点的最优方案中,一定会有一条抛物线经过当前状态的第一个点(否则就没法删掉它了);
3、那么我们只需要枚举经过当前状态第一个点的抛物线就可以(这么做一定不会有错误的决策)。
#include <set>
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define x1 x[i]
#define x2 x[j]
#define y1 y[i]
#define y2 y[j]
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const double ex=1e-;
int st[] = {}; int n, m;
double x[], y[];
int c[][];
int f[(<<)+]; void work(){
scanf("%d%d", &n, &m);
for (int i = ; i < n; i++)
scanf("%lf%lf", &x[i], &y[i]);
memset(c, , sizeof(c));
for (int i = ; i < n; i++)
for (int j = i+; j < n; j++){
double a = (x1*y2-y1*x2)/(x1*x2*x2-x1*x1*x2);
if (a >= ) continue;
double b = (y1-a*x1*x1)/x1;
for (int k = ; k < n; k++)
if (abs(y[k]-a*x[k]*x[k]-b*x[k]) <= ex)
c[i][j]+=st[k];
}
memset(f, , sizeof(f));
f[]=;
int lim = (<<n)-;
int INF = f[];
for (int i = ; i <= lim; i++)
if (f[i] != INF)
for (int j = ; j < n; j++)
if (!(i&st[j])){
f[i|st[j]] = Min(f[i|st[j]], f[i]+);
for (int k = j+; k < n; k++){
int tmp = i|c[j][k];
f[tmp] = Min(f[tmp], f[i]+);
}
}
printf("%d\n", f[lim]);
} int main(){
for (int i = ; i <= ; i++)
st[i] = st[i-]<<;
int t;
scanf("%d", &t);
while (t--)
work();
return ;
}
[NOIp 2016]愤怒的小鸟的更多相关文章
- Noip 2016 愤怒的小鸟 题解
[NOIP2016]愤怒的小鸟 时间限制:1 s 内存限制:256 MB [题目描述] Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0, ...
- NOIp 2016 总结
NOIp 2016 总结 -----YJSheep Day 0 对于考前的前一天,晚自习在复习图论的最短路和生成树,加深了图的理解.睡得比较早,养足精力明日再战. Day 1 拿到题目,先过一边,题目 ...
- 【NOIP 2016】斗地主
题意 NOIP 2016 斗地主 给你一些牌,按照斗地主的出牌方式,问最少多少次出完所有的牌. 分析 这道题的做法是DFS. 为了体现这道题的锻炼效果,我自己写了好多个代码. Ver1 直接暴力搞,加 ...
- [NOIP]2016天天爱跑步
[NOIP]2016天天爱跑步 标签: LCA 树上差分 NOIP Description 小C同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是 ...
- NOIP 2016 迟来的满贯
17-03-22,雨 17-03-22,一个特别重要的日子 在这一天,本蒻攻克了NOIP 2016最难的一题,D1T2——天天爱跑步 实现了NOIP 2016的AK! YAYAYAYAYAYAY 自然 ...
- NOIP 2016 D2T2 蚯蚓](思维)
NOIP 2016 D2T2 蚯蚓 题目大意 本题中,我们将用符号 \(\lfloor c \rfloor⌊c⌋\) 表示对 \(c\) 向下取整,例如:\(\lfloor 3.0 \rfloor = ...
- 【NOIP 2016】Day2 T3 愤怒的小鸟
Problem Description \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\ ...
- 【NOIP】提高组2016 愤怒的小鸟
[题意]Universal Online Judge [算法]状态压缩型DP [题解]看数据范围大概能猜到是状压了. 根据三点确定一条抛物线,枚举两个点之间的抛物线,再枚举有多少点在抛物线上(压缩为状 ...
- LUOGU P2831 愤怒的小鸟 (NOIP 2016)
题面 题解 好像昨天wxl大爷讲的是O(Tn*2^n)的做法,后来没想通,就自己写了个O(Tn^2*2^n)的暴力状压, 莫名其妙过了??数量级二十亿??懵逼,可能到了CCF老爷机上就T了.dp[S] ...
随机推荐
- Python基本数据结构--列表
列表: 1.有序的集合: 2.通过偏移来索引,从而读取数据: 3.支持嵌套: 4.可变的类型: 列表的操作: 1.切片: a = [1,2,3,4,5,6,7] 正向索引 反向索引 默认索引 2.添加 ...
- Leetcode 35——Search Insert Position
Given a sorted array and a target value, return the index if the target is found. If not, return the ...
- 凡事预则立(Beta)
听说--凡事预则立 吸取之前alpha冲刺的经验教训,也为了这次的beta冲刺可以更好更顺利地进行,更是为了迎接我们的新成员玮诗.我们开了一次组内会议,进行beta冲刺的规划. 上一张我们的合照: 具 ...
- 第二次作业:APP案例分析
App案例分析 产品:三国杀-页游手游双通 选择理由 当今社会手机已经渐渐取代了电脑在人们日常生活的需求,既然要选择APP进行案例分析,首推的估计就是手机APP了.三国杀是陪伴我高中时代的主要娱乐方式 ...
- LOW版统计词频
import string path = 'waldnn' with open(path,'r') as text: words = [raw_word.strip(string.punctuatio ...
- php网上支付易宝
巴巴运动网是通过易宝向招商银行打钱,这个首先易宝是需要审核巴巴运动网的钱来的是否正当不然易宝就成了一个洗钱的工具,这个是犯法的:因为钱的来路不明!财政部是需要抓起来的!所以钱的流向实际上是用户的招商银 ...
- DNS搜索过程
以www.renyi.com为例 一:客户端首先检查本地HOST文件,是否有对应的IP地址,如果有,客户端直接访问,如果没有,则执行下一步. 二:客户端查看本地缓存信息,是否有对应的IP地址,如果有, ...
- LR之error(一)
1 录制时频繁卡死的解决方案 添加数据保护 路径:计算机--高级系统设置(环境变量设置的上级窗口)--高级--设置--数据执行保护 更改LR录制设置,将run-time setting的brower改 ...
- MVC Form 表单 提交 集合 及 复杂对象
public class Customer { public string FName{get;set;} public Address address{get;set;} } public clas ...
- Nagios监控的部署与配置
[安装Nagios] yum install -y httpd httpd-devel httpd-tools mysql mysql-devel mysql-server php php-devel ...