对于该题可以直接预处理初始状态[0, 1, 2, 3, 4, 5, 6, 7]所有可以到达的状态,保存到达的路径,直接打印答案即可。

关于此处的状态转换:假设有初始状态为2,3,4,5,0,6,7,1,目标状态为7,1,4,5,2,3,0,6,首先把初态看做0,1,2,3,4,5,6,7,那么目标状态应该看做6,7,2,3,0,1,4,5直接查询到达状态6,7,2,3,0,1,4,5的路径即可。

PS:hdu3567与这题类似。

AC代码:93ms

#include<cstdio>
#include<cstring>
#include<queue>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
typedef int state[8];
const int maxn = 45000;

int vis[maxn];
string path[maxn];

int op[][8] = {
	4, 5, 6, 7, 0, 1, 2, 3,
	3, 0, 1, 2, 7, 4, 5, 6,
	0, 5, 1, 3, 4, 6, 2, 7
};

char dir[] = {'A', 'B', 'C'};

int st[] = {0, 1, 2, 3, 4, 5, 6, 7};

int fact[8];
void deal() {  //1~8阶乘打表,方便编码
	fact[0] = 1;
	for(int i = 1; i < 8; ++i) fact[i] = fact[i - 1] * i;
}

int KT(int *a) { //康托
	int code = 0;
	for(int i = 0; i < 8; ++i) {
		int cnt = 0;
		for(int j = i + 1; j < 8; ++j) if(a[j] < a[i]) cnt++;
		code += fact[7 - i] * cnt;
	}
	return code;
} 

struct node{
	int a[8];
	int code;
	node(){
	}
	node(int *b, int code):code(code) {
		memcpy(a, b, sizeof(a));
	}
};

void walk(int c, int *a) { //对数组进行第c种操作
	int b[8];
	memcpy(b, a, sizeof(b));
	for(int i = 0; i < 8; ++i) {
		a[i] = b[op[c][i]];
	}
}

void bfs() {  //预处理所有可以到达的状态
	memset(vis, 0, sizeof(vis));
	int code = KT(st);
	vis[code] = 1;
	path[code] = "";
	queue<node>q;
	q.push(node(st, code));
	while(!q.empty()){
		node p = q.front();
		q.pop();
		int a[8];
		for(int i = 0; i < 3; ++i) { //三种操作
			memcpy(a, p.a, sizeof(a));
			walk(i, a);
			code = KT(a);
			if(!vis[code]) {
				vis[code] = 1;
				path[code] = path[p.code] + dir[i];
				q.push(node(a, code));
			}
		}
	}
}

void deal(int *a) {
	swap(a[4], a[7]);
	swap(a[5], a[6]);
}

int main() {
	deal();
	bfs();
	int a[8], b[8], ha[8];
	char s[20];
	while(scanf("%s", s) == 1) {
		for(int i = 0; i < 8; ++i) {
			a[i] = s[i] - '0' - 1;
		}
		deal(a);
		for(int i = 0; i < 8; ++i) {
			ha[a[i]] = i;
		}
		scanf("%s", s);
		for(int i = 0; i < 8; ++i) {
			b[i] = s[i] - '0' - 1;
		}
		deal(b);
		for(int i = 0; i < 8; ++i) a[i] = ha[b[i]];
		int code = KT(a);
		cout << path[code] << endl;
		//cout << "HELLO" <<endl;
	}

	return 0;
}

如有不当之处欢迎指出!

HDU - 1430 魔板 (bfs预处理 + 康托)的更多相关文章

  1. hdu 1430 魔板 (BFS+预处理)

    Problem - 1430 跟八数码相似的一题搜索题.做法可以是双向BFS或者预处理从"12345678"开始可以到达的所有状态,然后等价转换过去直接回溯路径即可. 代码如下: ...

  2. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  4. [HDU 1430] 魔板

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  5. HDU - 1430 魔板 【BFS + 康托展开 + 哈希】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路 我刚开始 想到的 就是 康托展开 但是这个题目是 多组输入 即使用 康托展开 也是会T的 ...

  6. hdu 1430 魔板 康托展开 + 很好的映射

    http://acm.hdu.edu.cn/showproblem.php?pid=1430 如果从start ---> end,每一次都bfs进行,那么就肯定会超时. 考虑到先把start映射 ...

  7. HDU - 3567 Eight II (bfs预处理 + 康托) [kuangbin带你飞]专题二

    类似HDU1430,不过本题需要枚举X的九个位置,分别保存状态,因为要保证最少步数.要保证字典序最小的话,在扩展节点时,方向顺序为:down, left, right, up. 我用c++提交1500 ...

  8. hdu1430魔板(BFS+康托展开)

    做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先 ...

  9. HDU 3567 Eight II BFS预处理

    题意:就是八数码问题,给你开始的串和结束的串,问你从开始到结束的最短且最小的变换序列是什么 分析:我们可以预处理打表,这里的这个题可以和HDU1430魔板那个题采取一样的做法 预处理打表,因为八数码问 ...

随机推荐

  1. k8s 如何 Failover?- 每天5分钟玩转 Docker 容器技术(127)

    上一节我们有 3 个 nginx 副本分别运行在 k8s-node1 和 k8s-node2 上.现在模拟 k8s-node2 故障,关闭该节点. 等待一段时间,Kubernetes 会检查到 k8s ...

  2. JAVA中JPA的主键自增长注解设置

    JPA的注解来定义实体的时候,使用@Id来注解主键属性即可.如果数据库主键是自增长的,需要在增加一个注解@GeneratedValue,即: @GeneratedValue(strategy=Gene ...

  3. @interface注解类、 @Target:注解的作用目标 @Retention

    public @interface xxx 定义注解 @interface 不是interface,是注解类 是jdk1.5之后加入的,java没有给它新的关键字,所以就用@interface 这么个 ...

  4. Python实现XML文件解析

    1. XML简介 XML(eXtensible Markup Language)指可扩展标记语言,被设计用来传输和存储数据,已经日趋成为当前许多新生技术的核心,在不同的领域都有着不同的应用.它是web ...

  5. 客户端putty xshell连接linux中vim不能正常使用小键盘的问题

    在putty或xshell上用vi/vim的时候,开NumLock时按小键盘上的数字键并不能输入数字,而是出现一个字母然后换行(实际上是命令模式上对应上下左右的键). 解决方法: putty:选项Te ...

  6. HTML5详解(一)

    本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. HTML5的介绍 Web 技术发展时间线 1991 HTML 1994 ...

  7. HTML5之Notification简单使用

    var webNotification = { init: function() { if(!this.isSupport()) { console.log('不支持通知'); return; } t ...

  8. Effective Java 之-----谨慎的覆盖clone方法

    1.概述 如果clone方法返回一个由构造器创建的对象,它就得到有错误的类.因此,如果覆盖了非final类中的clone方法,则应该返回一个通过调用super.clone得到的对象.如果类的所有超类都 ...

  9. AndroidStudio3更改包名失败

    使用Android Studio 3.0 Beta6更改包名refactor---rename一直提示:Refactoring cannot be performedFile xxx\build\xx ...

  10. java文件监控[转]

    原文链接:http://blog.csdn.net/dancen/article/details/7786987#comments 问题:存在两个文件目录,且称之为源目录和目标目录,需要不定期将源目录 ...