删数方案数(regex)
[题目描述]
给出一个正整数序列 a,长度为 n,cyb 不喜欢完美,他要删掉一些数(也可以不删,即删掉0个),但是他不会乱删,他希望删去以后,能将 a 分成 2 个集合,使得两个非空集合的数的和相同,现在他希望你能帮他算出删数的方案数。
[输入文件]
第一行 n 个正整数
以下有 n行,每行1个
正整数表示整数序列a
[输出文件]
一个整数表示答案
[输入样例]
4
1 2 3 4
[输出样例]
3
[数据范围]
30%:n<=5
100%:n<=20
100%:a 中每个元素<=100000000
题解:
对于前半部分和后半部分dfs枚举
将前半部分得到的值包括状态存进hash(去重),在把后半部分的所有状态去重在hash中查找
本来是用的三进制数表示存进子集A,存进子集B,删去3种状态,后面发现没有必要
因为是“删数的方案”,也就是除删去的数,AB集合间如何分配并不关心,所以直接二进制就行
注意hash不能只存值,还要保存二进制数以判重,保存二进制数的数组不能太小也不能大
hash的大小70000够了,状态数组zt[70000][700]正好AC,500则90分,100则75分
博客里上传了数据,在管理里的文件
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
long long s;
int p;
}f[];
int n,zt[][],len,h[];
long long ans,has[],sp[],inf,a[];
bool cmp(Node a,Node b)
{
return (a.s<b.s||(a.s==b.s&&a.p<b.p));
}
void push_hash(long long x,int i)
{int j;
long long p=(x+)%;
while (has[p]!=inf&&has[p]!=x)
{
p++;
if (p>) p=;
}
if (has[p]==inf)
{
has[p]=x;
sp[p]=;
zt[p][sp[p]]=i;
}
else if (has[p]==x)
{
for (j=;j<=sp[p];j++)
if (i==zt[p][j]) return;
sp[p]++;
zt[p][sp[p]]=i;
}
}
void ask_hash(long long x,int i)
{int j;
long long p=(x+)%;
while (has[p]!=inf&&has[p]!=x)
{
p++;
if (p>) p=;
}
if (has[p]==x)
{
for (j=;j<=sp[p];j++)
h[zt[p][j]|i]=;
}
}
void dfs1(int x,long long s,int p)
{int i;
if (x>n/) push_hash(s,p);
else
for (i=-;i<=;i++)
dfs1(x+,s+i*a[x],p|((i!=)<<(x-)));
}
void dfs2(int x,long long s,int p)
{int i;
if (x>n) f[++len]=(Node){s,p};
else
for (i=-;i<=;i++)
dfs2(x+,s+i*a[x],p|((i!=)<<(x-)));
}
int main()
{int i,j;
long long s;
freopen("regex.in","r",stdin);
freopen("regex.out","w",stdout);
cin>>n;
memset(has,-,sizeof(has));
inf=has[];
for (i=;i<=n;i++)
scanf("%lld",&a[i]);
dfs1(,,);dfs2(n/+,,);
sort(f+,f+len+,cmp);
for (i=;i<len;i++)
if (f[i].s==f[i+].s&&f[i].p==f[i+].p) f[i].s=(<<);
sort(f+,f+len+,cmp);
while (f[len].s==(<<)) len--;
for (i=;i<=len;i++)
ask_hash(-f[i].s,f[i].p);
for (i=;i<=(<<n)-;i++) ans+=h[i];
//cout<<h[i]<<endl;
cout<<ans;
}
删数方案数(regex)的更多相关文章
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- Codeforces 461B. Appleman and Tree[树形DP 方案数]
B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- NOIP2012pj摆花[DP 多重背包方案数]
题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...
- UVa 11137 (完全背包方案数) Ingenuous Cubrency
题意:用13.23……k3这些数加起来组成n,输出总方案数 d(i, j)表示前i个数构成j的方案数则有 d(i, j) = d(i-1, j) + d(i, j - i3) 可以像01背包那样用滚动 ...
- poj2975 Nim 胜利的方案数
Nim Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5545 Accepted: 2597 Description N ...
- ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」
传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...
- P2347 砝码称重-DP方案数-bitset
P2347 砝码称重 DP做法 : 转化为 01背包. 进行方案数 更新.最后统计种类. #include<bits/stdc++.h> using namespace std; #def ...
- [HAOI2017]方案数[组合计数、容斥、dp]
题意 题目链接 分析 先考虑没有障碍怎么做,定义 f(i,j,k) 每一维走了 i,j,k 位的方案数,转移乘个组合数即可. 现在多了一些障碍,考虑容斥.实际我们走过的点都有严格的大小关系,所以先把所 ...
- hdu 2157 从a点走到b点刚好k步的方案数是多少 (矩阵快速幂)
n个点 m条路 询问T次 从a点走到b点刚好k步的方案数是多少 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存 ...
随机推荐
- C/C++生成随机数
一.rand和srand 在C++11标准出来之前,C/C++都依赖于stdlib.h头文件的rand或者srand来生成随机数. 其不是真正的随机数,是一个伪随机数,是根据一个数(我们可以称 ...
- tornado httpserver
# coding:utf-8 import tornado.web import tornado.ioloop import tornado.httpserver # 新引入httpserver模块 ...
- XCode Build Settings中几种Search Paths
Header search path:去查找头文件的路径,同在在你需要使用第三方库的时候,在这里设置你的头文件路径目录,如图 <code><span class="str& ...
- 小草手把手教你 LabVIEW 串口仪器控制——初识VISA串口
有些人,学习一样东西时候,喜欢现成的例子.很多人学习一门技术,都喜欢现成的例子开始,比如学单片机的啊,最开始都是修改的例子吧,学语言的也是.最开始都是模仿.这个年头看书上的理论知识太浪费时间了.所以啊 ...
- PostMan 调用WCF Rest服务
问题描述: 现在有已有的WCF服务,但是ajax是不能请求到这个服务的: 需要把WCF转成WCF REST 的风格. 以下是从WCF转 WCF REST的步骤 1.首先在接口定义的地方加上 请求 We ...
- B树和B+树的插入、删除图文详解
简介:本文主要介绍了B树和B+树的插入.删除操作.写这篇博客的目的是发现没有相关博客以举例的方式详细介绍B+树的相关操作,由于自身对某些细节也感到很迷惑,通过查阅相关资料,对B+树的操作有所顿悟,写下 ...
- vue-入门
数据绑定 <!--步骤1:创建html文件--> <!DOCTYPE html> <html lang="en"> <head> ...
- Docker的容器操作
启动一次性运行的容器 入门级例子:从ubuntu:14.04镜像启动一个容器,成功后在容器内部执行/bin/echo 'hello world'命令,如果当前物理机没有该镜像,则执行docker pu ...
- OAuth2.0学习(1-2)OAuth2.0的一个企业级应用场景 - 新浪开放平台微博OAuth2.0认证
http://open.weibo.com/wiki/%E9%A6%96%E9%A1%B5 开发者可以先浏览OAuth2.0的接口文档,熟悉OAuth2.0的接口及参数的含义,然后我们根据应用场景各自 ...
- Oracle update 执行更新操作后的数据恢复
操作数据库,经常会出现误操作,昨天执行的更新操作之后发现更新错了,只能想办法数据恢复了,现在整理一下 第一步:查询执行更新操作的时间 select r.FIRST_LOAD_TIME,r.* from ...