设$t=\sqrt r$,原题转化为$\sum_{x=1}^n(4*\lfloor\frac{tx}2\rfloor-2*\lfloor tx\rfloor+1)$
考虑如何求$\sum_{x=1}^n\lfloor\frac{bt+c}ax\rfloor$
开始我写了一个真欧几里得来求直线下整点数目,然后由于里头含小数所以不对。
于是学习了一下新姿势,思想其实差不多。
先把a,b,c同时除以gcd(a,b,c),防止爆int。
之后把斜率变成$\frac{bt+c}a-\lfloor\frac{bt+c}a\rfloor$,并计算对应贡献。
第三步把x,y轴互换,这时斜率变成了倒数,即$\frac a{bt+c}=\frac {abt-ac}{b^2t^2-c^2}$
特判r是完全平方数的时刻,因为这样直线上会有点,所以减的时候会减多。
补充:真欧几里得算法:
$$\sum_{0<=x<n} \lfloor \frac{ax+b}{c} \rfloor=n*\lfloor \frac{b}{c} \rfloor+\frac{n*(n-1)}{2}*\lfloor \frac{a}{c} \rfloor+\sum_{0<=x<\lfloor \frac{(a\%c)*n+b\%c\quad}{c} \rfloor} \lfloor \frac{cx+(an+b)\%c}{a\%c} \rfloor$$

#include <cstdio>
#include <cmath> int T,n,r;
double t;
int gcd(int a,int b) {return b?gcd(b,a%b):a;}
int sol(int n,int a,int b,int c) {
if (!n) return ;
int tmp=gcd(gcd(a,b),c); a/=tmp; b/=tmp; c/=tmp;
tmp=(t*b+c)/a; int sum=1ll*n*(n+)*tmp>>;
c-=tmp*a; tmp=(t*b+c)*n/a;
return sum+n*tmp-sol(tmp,b*b*r-c*c,a*b,-a*c);
} int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&r),t=sqrt(r);
if((int)t==t) printf("%d\n",(r&)?((n&)?-:):n);
else printf("%d\n",n+*sol(n,,,)-*sol(n,,,));
}
return ;
}

BZOJ3817 Sum(类欧几里得算法)的更多相关文章

  1. LOJ138 类欧几里得算法

    类欧几里得算法 给出 \(T\) 组询问,每组用 \(n, a, b, c, k_1, k_2\) 来描述.对于每组询问,请你求出 \[ \sum_{x = 0} ^ {n} x ^ {k_1} {\ ...

  2. [P5170] 类欧几里得算法

    "类欧几里得算法"第二题 P5170 [题意]已知\(n,a,b,c\),求 \[ \begin{aligned} f_{1}(a,b,c,n)&=\sum_{i=0}^n ...

  3. Solution -「Luogu 5170」类欧几里得算法

    推柿子大赛了属于是. 题目要求三个柿子,不妨分别记为: \[\begin {align} f (a, b, c, n) &= \sum \limits _{i = 0} ^{n} \lfloo ...

  4. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  5. Luogu 5170 【模板】类欧几里得算法

    原理不难但是写起来非常复杂的东西. 我觉得讲得非常好懂的博客.   传送门 我们设 $$f(a, b, c, n) = \sum_{i = 0}^{n}\left \lfloor \frac{ai + ...

  6. [BZOJ2987]Earthquake:类欧几里得算法

    分析 类欧的式子到底是谁推的啊怎么这么神仙啊orz! 简单说一下这道题,题目中的约束条件可以转化为: \[ y \leq \frac{c-ax}{b} \] 有负数怎么办啊?转化一下: \[ y \l ...

  7. 洛谷P5170 【模板】类欧几里得算法(数论)

    传送门 此题剧毒,公式恐惧症患者请直接转去代码→_→ 前置芝士 基本数论芝士 题解 本题就是要我们求三个函数的值 \[f(a,b,c,n)=\sum_{i=0}^n \left\lfloor\frac ...

  8. [BZOJ3817]Sum

    [BZOJ3817]Sum 试题描述 给定正整数N,R.求 输入 第一行一个数 T,表示有 T 组测试数据. 接下来 T 行,每行两个正整数 n,r. 输出 输出 T 行,每行一个整数表示答案. 输入 ...

  9. 【LuoguP4433】[COCI2009-2010#1] ALADIN(含类欧几里得算法推导)

    题目链接 题意简述 区间赋值模意义下等差数列,询问区间和 \(N\leq 10^9,Q\leq 10^5\) Sol 每次操作就是把操作区间\([L,R]\)中的数赋值成: \[(X-L+1)*A\ ...

随机推荐

  1. Entity Framework Core Code First

    参考地址:https://docs.microsoft.com/zh-cn/ef/core/get-started/aspnetcore/new-db

  2. Mego(07) - 关系配置

    这个是本框架的重要功能,该关系就是指对象中的复杂对象或集合属性,该关系与EF中的关系是有区别的.EF中强调关系的成对出现,这是由于数据库关系的思想决定的.然而Mego更接近与对象化逻辑,我们只关心当前 ...

  3. Centos7安装openvpn及客户端配置

    1.openvpn介绍 VPN直译就是虚拟专用通道,是提供给企业之间或者个人与公司之间安全数据传输的隧道,使用OpenSSL加密库中的SSLv3/TLSv1协议函数库. 目前OpenVPN能在Sola ...

  4. 基于 Java NIO 实现简单的 HTTP 服务器

    1.简介 本文是上一篇文章实践篇,在上一篇文章中,我分析了选择器 Selector 的原理.本篇文章,我们来说说 Selector 的应用,如标题所示,这里我基于 Java NIO 实现了一个简单的 ...

  5. vSphere Client 搭建Windows server 2008 r2 服务器指南

    下载准备 下载并安装vSphere Client 链接:https://pan.baidu.com/s/1v0IrGrMjpA2FGeqagaJN-g 密码:zzd1 下载Windows server ...

  6. Docker学习笔记 - Docker的远程访问

    学习内容: 配置客户端与守护进程的远程访问 服务端配置-H选项: 使服务端支持远程被访问 客户端使用-H选项: 使客户端访问远程服务端 本地环境DOCKER_HOST设置客户端访问的默认服务端地址 准 ...

  7. mysql(3)—— 内连接、外连接的区别

    先来看一下,内连接的语法: SELECT  XXX FROM XXX INNER JOIN XXX ON XXX; 这里 INNER 可以省略,在上一篇博客中我们对于笛卡尔积现象的研究中(http:/ ...

  8. 我的第二个开源库SuperTextView——中文文档

    一个简单的TextView实现了打字机的效果让文字一个个显示出来, 方法介绍: startShow  开始打字 使用: startShow(int typeStartTime,int typeTime ...

  9. hive:创建索引

    hive也是支持索引的使用,但是如果表中已经有数据的情况下,创建索引的过程不是特别快. 已经拥有表: create table if not exists llcfpd_withgroupbykey( ...

  10. SQL类型注入

    前言: 继续进行未完成的sql注入学习 今天学习了各类型注入.前来进行总结. 目录: 数字型注入 字符型注入 提交注注入 GET注入 POST注入 COOKIE注入 正文: 数字型注入:www.xxx ...