hdu 4609 (FFT求解三角形)
However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn't pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest,
determine the probability that they would be saved.
Each test case begins with the number of branches N(3≤N≤105).
The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
4
1 3 3 4
4
2 3 3 4
1.0000000
题意:给你n个边,求从其中选出3个组成三角形的概率
思路:参考-kuangbin大神
如果我们用num[i]表示长度为i的木棍有多少个,对于1 3 3 4就是
num[] = {0 1 0 2 1}从卷积的公式来看
乘法第k位置上的值 便是a[i]*b[j](i + j == k),如果位置表示的是长度,num[]表示的个数,那么卷积过后我们得到的便是两边和的个数
{0 1 0 2 1}*{0 1 0 2 1} 卷积的结果应该是{0 0 1 0 4 2 4 4 1 }。
在求出了两条边的和后,枚举第三边
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps=1e-10;
const int inf = 0x3f3f3f;
const int MOD = 1e9+7; const double PI = acos(-1.0); struct Complex
{
double x,y;
Complex(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator-(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator+(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator*(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
}; void change(Complex y[],int len)
{
int i,j,k;
for(i = 1,j = len/2; i < len-1; i++)
{
if(i < j) swap(y[i],y[j]);
k = len/2;
while(j >= k)
{
j-=k;
k/=2;
}
if(j < k) j+=k;
}
} void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0; j < len; j+=h)
{
Complex w(1,0);
for(int k = j; k < j+h/2; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+ t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
{
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} const int maxn = 401000;
Complex x1[maxn],x2[maxn];
ll sum[maxn];
ll num[maxn];
int a[maxn]; int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int len = 1;
int len1;
memset(num,0,sizeof(num));
for(int i = 0; i < n; i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
sort(a,a+n);
len1 = a[n-1] + 1;
while(len < len1*2) len <<= 1; for(int i = 0; i < len1; i++)
x1[i] = Complex(num[i],0);
for(int i = len1; i < len; i++)
x1[i] = Complex(0,0); fft(x1,len,1);
//fft(x2,len,1);
for(int i = 0; i < len; i++)
{
x1[i] =x1[i]*x1[i];
//cout << x1[i].x << " "<< x1[i].y <<endl;
}
fft(x1,len,-1);
for(int i = 0; i < len; i++)
{
sum[i] = (ll)(x1[i].x+0.5);
//cout << sum[i] << endl;
}
len = a[n-1] * 2;
for(int i = 0; i < n; i++) sum[a[i]+a[i]] --;
for(int i = 1; i <= len; i++) sum[i] /= 2;
for(int i = 1; i <= len; i++)
{
sum[i] += sum[i-1];
}
ll tot = (ll)n*(n-1)*(n-2)/6;
ll ans = 0; for(int i = 0; i < n; i++)
{
ans += sum[len]-sum[a[i]]; //两边之和大于第三边 ans -= (ll)(n-1-i) * i; //一个比自己大,一个比自己小
ans -= (n-1); //取了自己
ans -= (ll)(n-1-i)*(n-2-i)/2; //都比自己大
}
//printf("%.7lf\n",(double)ans/tot);
printf("%.7f\n",(double)ans/tot);
}
return 0;
}
hdu 4609 (FFT求解三角形)的更多相关文章
- HDU 4609 FFT模板
http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...
- hdu 4609 FFT
题意:给出一堆数,问从这些数中取3个能组成三角形的概率? sol:其实就是问从这些数里取3个组成三角形有多少种取法 脑洞大开的解法:用FFT 设一开始的数是1 3 3 4 作一个向量x,其中x[i]= ...
- HDU 4609 FFT+组合数学
3-idiots Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 4609 FFT+各种分类讨论
思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...
- hdu 4609 3-idiots [fft 生成函数 计数]
hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...
- 快速傅里叶变换应用之二 hdu 4609 3-idiots
快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...
- hdu 4609 3-idiots
http://acm.hdu.edu.cn/showproblem.php?pid=4609 FFT 不会 找了个模板 代码: #include <iostream> #include ...
- hdu 5830 FFT + cdq分治
Shell Necklace Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- hdu 5885 FFT
XM Reserves Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)T ...
随机推荐
- scrapy crawl rules设置
rules = [ Rule(SgmlLinkExtractor(allow=('/u012150179/article/details'), restrict_xpaths=('//li[@clas ...
- ios中录音功能的实现AudioSession的使用
这个星期我完成了一个具有基本录音和回放的功能,一开始也不知道从何入手,也查找了很多相关的资料.与此同时,我也学会了很多关于音频方面的东西,这也对后面的录音配置有一定的帮助.其中参照了<iPhon ...
- .Net Core SignalR 实时推送信息
以前一直没用成功过SignalR(.net asp),最近几天又参考了对应的文档,最终调成功啦. 开始之前,应该注意: 一定要.Net Core 2.1.0以上的SDK. VS2017 15.6以上的 ...
- 剑指offer-删除链表中重复的节点
题目描述 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4->5 处 ...
- Linq 大合集
static void Main(string[] args) { string[] words = { "zero", "one", "two&qu ...
- JAVA 中的 反射
CLASS类 1) 在面向对象的世界里,万事万物皆对象. 在java中有两样东西不是面向对象 1.普通的数据类型(java中有封装类来弥补它) 2. java中静态的东西 2) 类是对象吗? 类是对象 ...
- Python内置函数(15)——memoryview
英文文档: class memoryview(obj) memoryview objects allow Python code to access the internal data of an o ...
- GIT入门笔记(13)- GUI GIT
- SQL类型注入
前言: 继续进行未完成的sql注入学习 今天学习了各类型注入.前来进行总结. 目录: 数字型注入 字符型注入 提交注注入 GET注入 POST注入 COOKIE注入 正文: 数字型注入:www.xxx ...
- Linux 文件读写操作与磁盘挂载
文件读写 [文件描述符] Linux下,通常通过open打开一个文件,它然后返回给我们一个整数,通过这个整数便可以操作文件,这个整数我们称文件描述符(fd).对应被打开的文件,它也是一种系统资源,那么 ...