poj2975 Nim 胜利的方案数
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5545 | Accepted: 2597 |
Description
Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or more stones from any single pile. Play ends when all the stones have been removed, at which point the last player to have moved is declared the winner. Given a position in Nim, your task is to determine how many winning moves there are in that position.
A position in Nim is called “losing” if the first player to move from that position would lose if both sides played perfectly. A “winning move,” then, is a move that leaves the game in a losing position. There is a famous theorem that classifies all losing positions. Suppose a Nim position contains n piles having k1, k2, …, kn stones respectively; in such a position, there are k1 + k2 + … + kn possible moves. We write each ki in binary (base 2). Then, the Nim position is losing if and only if, among all the ki’s, there are an even number of 1’s in each digit position. In other words, the Nim position is losing if and only if the xor of the ki’s is 0.
Consider the position with three piles given by k1 = 7, k2 = 11, and k3 = 13. In binary, these values are as follows:
111
1011
1101
There are an odd number of 1’s among the rightmost digits, so this position is not losing. However, suppose k3 were changed to be 12. Then, there would be exactly two 1’s in each digit position, and thus, the Nim position would become losing. Since a winning move is any move that leaves the game in a losing position, it follows that removing one stone from the third pile is a winning move when k1 = 7, k2 = 11, and k3 = 13. In fact, there are exactly three winning moves from this position: namely removing one stone from any of the three piles.
Input
The input test file will contain multiple test cases, each of which begins with a line indicating the number of piles, 1 ≤ n ≤ 1000. On the next line, there are n positive integers, 1 ≤ ki ≤ 1, 000, 000, 000, indicating the number of stones in each pile. The end-of-file is marked by a test case with n = 0 and should not be processed.
Output
For each test case, write a single line with an integer indicating the number of winning moves from the given Nim position.
Sample Input
3
7 11 13
2
1000000000 1000000000
0
Sample Output
3
0
/*
poj2975 Nim 胜利的方案数 nim游戏是异或和不为0的时候,是必胜的。
例:先手人员可以先拿一个,然后异或和为0,然后对手拿多少,你就拿多少。
从而达到必胜的。
1011 ------> 1010
1010 拿一个 1010 这个是求总共有多少种必胜的方法,开始想的是通过SG值来计算,但是数范围太大
结果还是从nim的原理上分析
如果我们从一个人那个取走一部分,从而使剩下的所有的异或和为0
那么取的 那一堆的数量 ta[i] > 剩下其它碓的异或和
所以可以依靠这个来判断胜利的方法数量。 hhh-2016-08-01 20:16:14
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <functional>
#include <vector>
#include <queue>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const ll mod = 1e9 + 7;
const ll INF = 0x3f3f3f3f;
const int maxn = 1000100; ll ta[maxn]; int main()
{
int n ;
while(scanf("%d",&n) != EOF && n)
{
ll ans = 0;
int tans = 0;
for(int i = 0;i < n;i++)
{
scanf("%I64d",&ta[i]);
ans ^= ta[i];
}
for(int i = 0;i < n;i++)
{
if( (ans ^ ta[i]) < ta[i])
tans ++;
}
printf("%d\n",tans);
}
return 0;
}
poj2975 Nim 胜利的方案数的更多相关文章
- HDU 1850 (Nim博弈 取胜方案数) Being a Good Boy in Spring Festival
考虑到Bouton定理的证明过程,设n个数的Nim和(异或和)为X,其最高位的1在第k位,那么n个数中一定有个y的第k为也是个1. 将y的数量变为X xor y,那么n的数的Nim和为0,便转为先手必 ...
- [Project Euler 409] Nim Extreme 解题报告 (统计方案数)
题目链接:https://projecteuler.net/problem=409 题目: 题解: 题目问你必胜态的数目,我们考虑用总的方案数减去必败态的方案数(NIM游戏没有平局这个操作) 必败态的 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- Codeforces 461B. Appleman and Tree[树形DP 方案数]
B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- NOIP2012pj摆花[DP 多重背包方案数]
题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...
- UVa 11137 (完全背包方案数) Ingenuous Cubrency
题意:用13.23……k3这些数加起来组成n,输出总方案数 d(i, j)表示前i个数构成j的方案数则有 d(i, j) = d(i-1, j) + d(i, j - i3) 可以像01背包那样用滚动 ...
- 删数方案数(regex)
[题目描述] 给出一个正整数序列 a,长度为 n,cyb 不喜欢完美,他要删掉一些数(也可以不删,即删掉0个),但是他不会乱删,他希望删去以后,能将 a 分成 2 个集合,使得两个非空集合的数的和相同 ...
- ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」
传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...
- P2347 砝码称重-DP方案数-bitset
P2347 砝码称重 DP做法 : 转化为 01背包. 进行方案数 更新.最后统计种类. #include<bits/stdc++.h> using namespace std; #def ...
随机推荐
- 第十一条:谨慎的覆盖clone()方法
一个类要想实现克隆,需要实现Cloneable接口,表明这个类的对象具有克隆的功能. Cloneable接口是一个mixin接口,它里面并没有任何的抽象方法,类似的接口有Serializable接口, ...
- 库函数atoi
函数名:atoi 功能: 把一个字符串转换成一个整数. 看似简单,主要是情况太多,需要注意考虑. 测试代码: Test(NULL); Test(""); Test("12 ...
- Java 后端微信小程序支付demo (网上说的坑里面基本上都有)
Java 后端微信小程序支付 一.遇到的问题 1. 商户号该产品权限未开通,请前往商户平台>产品中心检查后重试 2.签名错误 3.已经调起微信统一下单接口,可以拿到预支付ID,但是前端支付的时候 ...
- bzoj千题计划275:bzoj4817: [Sdoi2017]树点涂色
http://www.lydsy.com/JudgeOnline/problem.php?id=4817 lct+线段树+dfs序 操作1:access 操作2:u到根的-v到根的-lca到根的*2+ ...
- MongoDB 副本集管理
一.以单机模式启动成员节点 有时候出于维护的需要,需要以单机模式启动某个节点而不是一个副本集成员身份. 1).首先查询服务器命令行参数 db.serverCmdLineOpts() 2).关闭当前副本 ...
- 看到一个对CAP简单的解释
一个分布式系统里面,节点组成的网络本来应该是连通的.然而可能因为一些故障,使得有些节点之间不连通了,整个网络就分成了几块区域.数据就散布在了这些不连通的区域中.这就叫分区.当你一个数据项只在一个节点中 ...
- typedef 使用
1,C 语言提供了 typedef 关键字,您可以使用它来为类型取一个新的名字. #include<stdio.h> typedef unsigned char BYTE; int mai ...
- 用javascript做别踩白块游戏2
这一次做一个好一点的,要求黑块自动下落,且速度逐渐加快 <!DOCTYPE html> <html> <head> <!-- 禁用缩放功能 --> &l ...
- Java设计模式(七)Decorate装饰器模式
一.场景描述 (一)问题 系统中最初使用Crystal Report(水晶报表)工具生成报表,并将报表发送给客户端查看,此时定义一CrystalReport工具类即可完成水晶报表的生成工作. 后续报表 ...
- .NET:持续进化的统一开发平台
阅读文本大概需要 8 分钟. 标题使用的是进化这个词语,是因为 .NET 在不断的努力,也在不断的重构. 这篇文章的更多目的和意义在于科普,俗称"传教". # 持续进化的 .NET ...