原文

接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C。回头看一眼引入了松弛变量以后的优化问题:

注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用不同的C,这时就意味着你对每个样本的重视程度都不一样,有些样本丢了也就丢了,错了也就错了,这些就给一个比较小的C;而有些样本很重要,决不能分类错误(比如中央下达的文件啥的,笑),就给一个很大的C。

当然实际使用的时候并没有这么极端,但一种很常用的变形可以用来解决分类问题中样本的“偏斜”问题。

先来说说样本的偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10,000个样本,而负类只给了100个,这会引起的问题显而易见,可以看看下面的图:

方形的点是负类。H,H1,H2是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是H’,H2’和H1,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,我们算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。

对付数据集偏斜问题的方法之一就是在惩罚因子上作文章,想必大家也猜到了,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本(本来数量就少,再抛弃一些,那人家负类还活不活了),因此我们的目标函数中因松弛变量而损失的部分就变成了:

其中i=1…p都是正样本,j=p+1…p+q都是负样本。libSVM这个算法包在解决偏斜问题的时候用的就是这种方法。

那C+和C-怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。咱们先假定说C+是5这么大,那确定C-的一个很直观的方法就是使用两类样本数的比来算,对应到刚才举的例子,C-就可以定为500这么大(因为10,000:100=100:1嘛)。

但是这样并不够好,回看刚才的图,你会发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类本应该有的区域)。说一个具体点的例子,现在想给政治类和体育类的文章做分类,政治类文章很多,而体育类只提供了几篇关于篮球的文章,这时分类会明显偏向于政治类,如果要给体育类文章增加样本,但增加的样本仍然全都是关于篮球的(也就是说,没有足球,排球,赛车,游泳等等),那结果会怎样呢?虽然体育类文章在数量上可以达到与政治类一样多,但过于集中了,结果仍会偏向于政治类!所以给C+和C-确定比例更好的方法应该是衡量他们分布的程度。比如可以算算他们在空间中占据了多大的体积,例如给负类找一个超球——就是高维空间里的球啦——它可以包含所有负类的样本,再给正类找一个,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。

但是这样还不够好,因为有的类别样本确实很集中,这不是提供的样本数量多少的问题,这是类别本身的特征(就是某些话题涉及的面很窄,例如计算机类的文章就明显不如文化类的文章那么“天马行空”),这个时候即便超球的半径差异很大,也不应该赋予两个类别不同的惩罚因子。

看到这里读者一定疯了,因为说来说去,这岂不成了一个解决不了的问题?然而事实如此,完全的方法是没有的,根据需要,选择实现简单又合用的就好(例如libSVM就直接使用样本数量的比)。

 

数据集偏斜 - class skew problem - 以SVM松弛变量为例的更多相关文章

  1. Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子

    转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...

  2. 7. SVM松弛变量

    我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了.然而,映射后我们也不能100%保证可分.那怎么办呢,我们需要将模型进 ...

  3. Python实现鸢尾花数据集分类问题——基于skearn的SVM

    Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaoli ...

  4. SVM松弛变量-记录毕业论文3

    上一篇博客讨论了高维映射和核函数,也通过例子说明了将特征向量映射到高维空间中可以使其线性可分.然而,很多情况下的高维映射并不能保证线性可分,这时就可以通过加入松弛变量放松约束条件.同样这次的记录仍然通 ...

  5. SVM python小样例

    SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化(SMO)算法在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上基于最大间隔的分割数据优点:泛化错误率低, ...

  6. SVM学习(五):松弛变量与惩罚因子

    https://blog.csdn.net/qll125596718/article/details/6910921 1.松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而 ...

  7. SVM学习(续)核函数 & 松弛变量和惩罚因子

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  8. SVM学习(续)

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  9. 【转】 SVM算法入门

    课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...

随机推荐

  1. <input type="file">上传文件并添加路径到数据库

    注:这里是用的mvc所以没法用控件 html代码 <form method="post" enctype="multipart/form-data"> ...

  2. reStructuredText(rst)快速入门语法说明

    reStructuredText 是扩展名为.rst的纯文本文件,含义为"重新构建的文本"",也被简称为:RST或reST:是Python编程语言的Docutils项目的 ...

  3. C# VLCPlayer视频播放器(附源码)

    VLCPlayer视频播放器. 支持本地播放,支持网络URL.支持全屏,截图. 基于VLCPlayer. 附带基本代码. 下载地址:http://pan.baidu.com/s/1nvjNvID

  4. Win10 UWP开发系列:使用VS2015 Update2+ionic开发第一个Cordova App

    安装VS2015 Update2的过程是非常曲折的.还好经过不懈的努力,终于折腾成功了. 如果开发Cordova项目的话,推荐大家用一下ionic这个框架,效果还不错.对于Cordova.PhoneG ...

  5. tee(打印并保存文件)

     tee从标准设备读取数据,输出到标准输出设备,同时保存成文件-a 附加到既有文件后面,而非覆盖他.例如: pwd |  tee who.out

  6. 来玩Play框架07 静态文件

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Play框架的主要功能是提供动态响应的内容.但一个网络项目中必然有大量的静态内容, ...

  7. C#工业物联网和集成系统解决方案的技术路线(数据源、数据采集、数据上传与接收、ActiveMQ、Mongodb、WebApi、手机App)

    目       录 工业物联网和集成系统解决方案的技术路线... 1 前言... 1 第一章           系统架构... 3 1.1           硬件构架图... 3 1.2      ...

  8. Eclipse 日期和时间格式自定义

    点击下载Eclipse插件  org.eclipse.text_3.5.300.v20130515-1451.jar  覆盖下图所示的jar文件. /************************* ...

  9. JS高程4.变量,作用域和内存问题(2)执行环境及作用域

    1.执行环境:执行环境定义了变量或函数有权访问的其他数据,决定了它们各自的行为, 每个执行环境都有一个与之相关联的变量对象,环境中定义的所有变量和函数都保存在这个对象中. 2.全局执行环境: 最外围的 ...

  10. 浅谈Hybrid技术的设计与实现第三弹——落地篇

    前言 接上文:(阅读本文前,建议阅读前两篇文章先) 浅谈Hybrid技术的设计与实现 浅谈Hybrid技术的设计与实现第二弹 根据之前的介绍,大家对前端与Native的交互应该有一些简单的认识了,很多 ...