使用TensorFlow实现回归预测
这一节使用TF搭建一个简单的神经网络用于回归预测,首先随机生成一组数据
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.set_random_seed(42)
np.random.seed(42)
x = np.linspace(-1,1,100)[:,np.newaxis] #<==>x=x.reshape(100,1)
noise = np.random.normal(0,0.1,size = x.shape)
y=np.power(x,2) + x +noise #y=x^2 + x+噪音
plt.scatter(x,y)
plt.show()
随机生成了一组数据,模型为\(y=x^2+x\),看一下数据的分布

接下来搭建一个含有一个隐藏层的神经网络,损失选择使用均方差误差
#模型部分
tf_X = tf.placeholder(tf.float32,x.shape) #=>X
tf_y = tf.placeholder(tf.float32,y.shape) #=>y
output = tf.layers.dense(tf_X,10,tf.nn.relu,name="hidden")#隐藏层10个节点
output = tf.layers.dense(output,1,name='output') #1个输出层
#loss = tf.losses.mean_squared_error(tf_y,output)
loss = tf.reduce_mean(tf.sqrt(tf.pow(tf_y-output,2)))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.2)
train_op = optimizer.minimize(loss)
其中tf.losses中提供了常用的损失函数实现,也可以自己去实现,开始训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
plt.ion()
for step in range(100):
_,err,pred = sess.run([train_op,loss,output],feed_dict={tf_X:x,tf_y:y})
#cla() # Clear axis
#clf() # Clear figure
#close() # Close a figure window
plt.cla()#
plt.scatter(x,y)
plt.plot(x,pred,'r-',lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % err, fontdict={'size': 20, 'color': 'red'})
#plt.show()
plt.ioff()
plt.show()
看一看效果:

note:上面使用了plt.cla方法,这是由于方便看到变化过程,将plot过程写入到了for循环中,为了避免发生意外错误将对象从内存中清空。
使用TensorFlow实现回归预测的更多相关文章
- Tensorflow 线性回归预测房价实例
在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...
- TensorFlow笔记二:线性回归预测(Linear Regression)
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- TensorFlow入门(五)多层 LSTM 通俗易懂版
欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经 ...
- [Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction
Ref: http://blog.csdn.net/u014595019/article/details/52759104 Time: 2min Successfully downloaded tra ...
- Tensorflow实现LSTM识别MINIST
import tensorflow as tf import numpy as np from tensorflow.contrib import rnn from tensorflow.exampl ...
- TensorFlow笔记四:从生成和保存模型 -> 调用使用模型
TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py ...
- 深度学习笔记(十三)YOLO V3 (Tensorflow)
[代码剖析] 推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了 于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...
随机推荐
- Spark SQL1.2与HDP2.2结合
1.hbase相同的rowkey里存在多条记录问题的调研解决方案 VERSIONS => 3,Hbase version 最多插入三条记录 将一个集群hbase中表 "Vertical ...
- 嵌入式Linux引导过程之1.4——Xloader的ddr_init
这里我们来看XLOADER_ENTRY中调用的第二个标号ddr_init处的代码,这部分代码的作用是对外部内存SDRAM进行初始化,在我 spearplus开发板中,使用的是DDR SDRAM.在调用 ...
- 八爪鱼采集器︱爬取外网数据(twitter、facebook)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 要想采集海外数据有两种方式:云采集+单机采集. ...
- R语言︱情感分析—词典型代码实践(最基础)(一)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中 ...
- dojo报错总结
dojo报错总结 1.错误一 neteaseTracker is not defined dojo.js(第15行) 2.错误二 _10 is undefined _SearchMixin.js(第5 ...
- VxWorks 操作系统内存布局
在VxWorks操作系统过程中可能使用到的BootRom和VxWorks内核映像本身都可以存在两种方式:压缩的和非压缩的. 1.非压缩形式 如果没有进行压缩,则只有一次重定位,即从ROM到RAM只存在 ...
- sea.js介绍
网址:http://seajs.org/docs/ SeaJS是一个遵循CommonJS规范的JavaScript模块加载框架,可以实现JavaScript的模块化开发及加载机制.与jQuery等Ja ...
- java.io.FileNotFoundException: /opt/apache-tomcat-7.0.57/conf/server.xml (权限不够)
1 错误描述 youhaidong@youhaidong:~$ cd /opt/apache-tomcat-7.0.57 youhaidong@youhaidong:/opt/apache-tomca ...
- 新建.Net Core应用程序后引用项一直黄色感叹号怎么办?
我们在vs中创建.Net Core应用程序后,引用项可能出现黄色感叹号,正常情况下,这种黄色感叹号时能在项目创建成功之后迅速消失的,可也有些时候一直不消失,怎么办? 我们可以选中异常的项目,然后右键菜 ...
- jQuery.extend 函数使用详解
JQuery的extend扩展方法: Jquery的扩展方法extend是我们在写插件的过程中常用的方法,该方法有一些重载原型,在此,我们一起去了解了解. 一.Jquery的扩展方 ...