使用TensorFlow实现回归预测
这一节使用TF搭建一个简单的神经网络用于回归预测,首先随机生成一组数据
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.set_random_seed(42)
np.random.seed(42)
x = np.linspace(-1,1,100)[:,np.newaxis] #<==>x=x.reshape(100,1)
noise = np.random.normal(0,0.1,size = x.shape)
y=np.power(x,2) + x +noise #y=x^2 + x+噪音
plt.scatter(x,y)
plt.show()
随机生成了一组数据,模型为\(y=x^2+x\),看一下数据的分布

接下来搭建一个含有一个隐藏层的神经网络,损失选择使用均方差误差
#模型部分
tf_X = tf.placeholder(tf.float32,x.shape) #=>X
tf_y = tf.placeholder(tf.float32,y.shape) #=>y
output = tf.layers.dense(tf_X,10,tf.nn.relu,name="hidden")#隐藏层10个节点
output = tf.layers.dense(output,1,name='output') #1个输出层
#loss = tf.losses.mean_squared_error(tf_y,output)
loss = tf.reduce_mean(tf.sqrt(tf.pow(tf_y-output,2)))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.2)
train_op = optimizer.minimize(loss)
其中tf.losses中提供了常用的损失函数实现,也可以自己去实现,开始训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
plt.ion()
for step in range(100):
_,err,pred = sess.run([train_op,loss,output],feed_dict={tf_X:x,tf_y:y})
#cla() # Clear axis
#clf() # Clear figure
#close() # Close a figure window
plt.cla()#
plt.scatter(x,y)
plt.plot(x,pred,'r-',lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % err, fontdict={'size': 20, 'color': 'red'})
#plt.show()
plt.ioff()
plt.show()
看一看效果:

note:上面使用了plt.cla方法,这是由于方便看到变化过程,将plot过程写入到了for循环中,为了避免发生意外错误将对象从内存中清空。
使用TensorFlow实现回归预测的更多相关文章
- Tensorflow 线性回归预测房价实例
在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...
- TensorFlow笔记二:线性回归预测(Linear Regression)
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- TensorFlow入门(五)多层 LSTM 通俗易懂版
欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经 ...
- [Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction
Ref: http://blog.csdn.net/u014595019/article/details/52759104 Time: 2min Successfully downloaded tra ...
- Tensorflow实现LSTM识别MINIST
import tensorflow as tf import numpy as np from tensorflow.contrib import rnn from tensorflow.exampl ...
- TensorFlow笔记四:从生成和保存模型 -> 调用使用模型
TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py ...
- 深度学习笔记(十三)YOLO V3 (Tensorflow)
[代码剖析] 推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了 于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...
随机推荐
- Spark SQL 1.3测试
Spark SQL 1.3 参考官方文档:Spark SQL and DataFrame Guide 概览介绍参考:平易近人.兼容并蓄——Spark SQL 1.3.0概览 DataFrame提供了一 ...
- Android开发Toast Notifications
Android开发Toast Notifications 关键类 Toast toast通知是一种在窗口表面弹出的消息.它只占用信息显示所需的空间,用户当前的activity仍保持可见并可交互.该通知 ...
- Sparklyr与Docker的推荐系统实战
作者:Harry Zhu 链接:https://zhuanlan.zhihu.com/p/21574497 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 相关内容: ...
- HighCharts之2D折线图
HighCharts之2D折线图 1.HighCharts之2D折线图源码 line.html: <!DOCTYPE html> <html> <head> < ...
- Java中的List转换成JSON报错(三)
1.错误描述 Exception in thread "main" java.lang.NoClassDefFoundError: net/sf/ezmorph/Morpher a ...
- Django学习-20-信号
Django信号 使得某个操作之前能定制化一些任务 - 内置信号 pre_init # django的model执行其构造方法前,自动触发 post_ ...
- PC软件与PLC串口通信 奇偶检验问题
PC软件与PLC进行串口通信 波特率:19200 校验位:偶检验 数据位:8 停止位:1 现象 一,PC软件向PLC可以发送1,2,4,5,7,8,但是3,6,9发送出去后,PLC无法收到 二,使 ...
- 第三篇:爬虫框架 - Scrapy
前言 Python提供了一个比较实用的爬虫框架 - Scrapy.在这个框架下只要定制好指定的几个模块,就能实现一个爬虫. 本文将讲解Scrapy框架的基本体系结构,以及使用这个框架定制爬虫的具体步骤 ...
- order by group by
order by 后 group by连用, mysql好像 >5.4不起作用 通过 explain 查看执行计划,可以看到没有 limit 的时候,少了一个 DERIVED 操作 估计是内部优 ...
- [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...