本文原始地址:https://farmer-hutao.github.io/k8s-source-code-analysis/core/scheduler/desigh.html

github项目地址:https://github.com/farmer-hutao/k8s-source-code-analysis

1. 概述

我们先整体了解一下Scheduler的设计原理,然后再看这些过程是如何用代码实现的。关于调度器的设计在官网有介绍,我下面结合官网给的说明,简化掉不影响理解的复杂部分,和大家介绍一下Scheduler的工作过程。

英文还可以的小伙伴们可以看一下官网的介绍先:scheduler.md

官网有一段描述如下:

The Kubernetes scheduler runs as a process alongside the other master components such as the API server. Its interface to the API server is to watch for Pods with an empty PodSpec.NodeName, and for each Pod, it posts a binding indicating where the Pod should be scheduled.

简单翻译一下,也就是说Scheduler是一个跑在其他组件边上的独立程序,对接Apiserver寻找PodSpec.NodeName为空的Pod,然后用post的方式发送一个api调用,指定这些pod应该跑在哪个node上。

通俗地说,就是scheduler是相对独立的一个组件,主动访问api server,寻找等待调度的pod,然后通过一系列调度算法寻找哪个node适合跑这个pod,然后将这个pod和node的绑定关系发给api server,从而完成了调度的过程。

2. 源码层级

从高level看,scheduler的源码可以分为3层:

  • cmd/kube-scheduler/scheduler.go: main() 函数入口位置,在scheduler过程开始被调用前的一系列初始化工作。
  • pkg/scheduler/scheduler.go: 调度框架的整体逻辑,在具体的调度算法之上的框架性的代码。
  • pkg/scheduler/core/generic_scheduler.go: 具体的计算哪些node适合跑哪些pod的算法。

3. 调度算法

调度过程整体如下图所示(官文里这个图没对齐,逼疯强迫症了!!!当然由于中文显示的问题,下图有中文的行也没法完全对齐,这个地方让我很抓狂。。。):

对于一个给定的pod
+---------------------------------------------+
| 可用于调度的nodes如下: |
| +--------+ +--------+ +--------+ |
| | node 1 | | node 2 | | node 3 | |
| +--------+ +--------+ +--------+ |
+----------------------+----------------------+
|
v
+----------------------+----------------------+
初步过滤: node 3 资源不足
+----------------------+----------------------+
|
v
+----------------------+----------------------+
| 剩下的nodes: |
| +--------+ +--------+ |
| | node 1 | | node 2 | |
| +--------+ +--------+ |
+----------------------+----------------------+
|
v
+----------------------+----------------------+
优先级算法计算结果: node 1: 分数=2
node 2: 分数=5
+----------------------+----------------------+
|
v
选择分值最高的节点 = node 2

Scheduler为每个pod寻找一个适合其运行的node,大体分成三步:

  1. 通过一系列的“predicates”过滤掉不能运行pod的node,比如一个pod需要500M的内存,有些节点剩余内存只有100M了,就会被剔除;
  2. 通过一系列的“priority functions”给剩下的node排一个等级,分出三六九等,寻找能够运行pod的若干node中最合适的一个node;
  3. 得分最高的一个node,也就是被“priority functions”选中的node胜出了,获得了跑对应pod的资格。

4. Predicates 和 priorities 策略

Predicates是一些用于过滤不合适node的策略 . Priorities是一些用于区分node排名(分数)的策略(作用在通过predicates过滤的node上). K8s默认内建了一些predicates 和 priorities 策略,官方文档介绍地址: scheduler_algorithm.md. Predicates 和 priorities 的代码分别在:

  • pkg/scheduler/algorithm/predicates/predicates.go
  • pkg/scheduler/algorithm/priorities.

5. Scheduler 的拓展性

我们可以选择哪些预置策略生效,也可以添加自己的策略。几个月前我司有个奇葩调度需求,当时我就是通过增加一个priorities策略,然后重新编译了一个Scheduler来实现的需求。

6. 调度策略的修改

默认调度策略是通过defaultPredicates() 和 defaultPriorities()函数定义的,源码在 pkg/scheduler/algorithmprovider/defaults/defaults.go,我们可以通过命令行flag --policy-config-file来覆盖默认行为。所以我们可以通过配置文件的方式或者修改pkg/scheduler/algorithm/predicates/predicates.go/pkg/scheduler/algorithm/priorities,然后注册到defaultPredicates()/defaultPriorities()来实现。配置文件类似下面这个样子:

{
"kind" : "Policy",
"apiVersion" : "v1",
"predicates" : [
{"name" : "PodFitsHostPorts"},
{"name" : "PodFitsResources"},
{"name" : "NoDiskConflict"},
{"name" : "NoVolumeZoneConflict"},
{"name" : "MatchNodeSelector"},
{"name" : "HostName"}
],
"priorities" : [
{"name" : "LeastRequestedPriority", "weight" : 1},
{"name" : "BalancedResourceAllocation", "weight" : 1},
{"name" : "ServiceSpreadingPriority", "weight" : 1},
{"name" : "EqualPriority", "weight" : 1}
],
"hardPodAffinitySymmetricWeight" : 10,
"alwaysCheckAllPredicates" : false
}

ok,看到这里大伙应该在流程上对Scheduler的原理有个感性的认识了,下一节我们就开始看一下Scheduler源码是怎么写的。

《k8s-1.13版本源码分析》- 调度器设计的更多相关文章

  1. 《k8s-1.13版本源码分析》-调度器初始化

    源码分析系列文章已经开源到github,地址如下: github:https://github.com/farmer-hutao/k8s-source-code-analysis gitbook:ht ...

  2. 《k8s-1.13版本源码分析》-调度预选

    本文大纲 预选流程 predicate的并发 一个node的predicate predicates的顺序 单个predicate执行过程 具体的predicate函数 本系列文章已经开源到githu ...

  3. 《k8s-1.13版本源码分析》-抢占调度

    源码分析系列文章已经开源到github,地址如下: github:https://github.com/farmer-hutao/k8s-source-code-analysis gitbook:ht ...

  4. 《k8s-1.13版本源码分析》-调度器框架

    本文原始地址(gitbook格式):https://farmer-hutao.github.io/k8s-source-code-analysis/core/scheduler/scheduler-f ...

  5. 《k8s-1.13版本源码分析》-调度优选

    源码分析系列文章已经开源到github,地址如下: github:https://github.com/farmer-hutao/k8s-source-code-analysis gitbook:ht ...

  6. 《k8s-1.13版本源码分析》-源码调试

    源码分析系列文章已经开源到github,地址如下: github:https://github.com/farmer-hutao/k8s-source-code-analysis gitbook:ht ...

  7. 《k8s-1.13版本源码分析》- Scheduler启动前逻辑

    本文原始地址(gitbook格式):https://farmer-hutao.github.io/k8s-source-code-analysis/core/scheduler/before-sche ...

  8. 《k8s-1.13版本源码分析》- Informer 机制

    源码分析系列文章已经开源到github,地址如下: github:https://github.com/farmer-hutao/k8s-source-code-analysis gitbook:ht ...

  9. 《k8s-1.13版本源码分析》上github

    要干嘛? 猪年新气象,今年开始,kubernetes源码分析系列文章主战场从微信公众号转至github,完全使用Markdown重写,使用gitbook生成web页面,支持在线阅读,导出pdf等各种玩 ...

随机推荐

  1. 机器学习(2) - KNN识别MNIST

    代码 https://github.com/s055523/MNISTTensorFlowSharp 数据的获得 数据可以由http://yann.lecun.com/exdb/mnist/下载.之后 ...

  2. CSS(选择器)

    CSS(选择器) 作用:用于匹配 HTML 元素 选择器分类: 1.元素选择器  a{} 2.伪元素选择器  ::before{}  (真实存在的元素) 3.类选择器   .link{} 4.属性选择 ...

  3. Python_mongoDB

    ''' MogoDB数据库可以到官方网站https://www.mongodb.org/downloads下载,安装之后打开命令提示符环境并切换到MongoDB安装目录总的 server\3.2\bi ...

  4. Idea的一些调试技巧

    程序员的工作内容,除了大部分时间写代码之外,因为有不少的时间是用在调试代码上.甚至说不是在调试代码,就是即将调试代码. :) 今天我们来谈谈调试代码的一些技巧,在使用IDE提供的debugger时一些 ...

  5. Spring Cloud构建微服务架构(二)服务消费者

    Netflix Ribbon is an Inter Process Communication (IPC) cloud library. Ribbon primarily provides clie ...

  6. AES在线加密解密-附AES128,192,256,CBC,CFB,ECB,OFB,PCBC各种加密解密源码

    一.AES在线加密解密:AES 128/192/256位CBC/CFB/ECB/OFB/PCBC在线加密解密|在线工具|在线助手|在线生成|在线制作 http://www.it399.com/aes ...

  7. HTML5 CSS3 专题 : 拖放 (Drag and Drop)

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/31413767 本来准备写一个支持多图片拖拽上传的例子,但是为了更好的理解,先介绍 ...

  8. Vue在MVC中的进行前后端的交互

    Vue在MVC中的进行前后端的交互 Preface: 由于最近在研究前端相关的技术,作为前端非常优秀的框架Vue,个人在学习的过程中遇到一些问题,网上相关资料有限,所以在这这里总结一下个人使用Vue的 ...

  9. VMware12下CentOS 7安装教程

    CentOS 7 DVD安装光盘(百度搜索CentOS即可找到官方主页):VMware Workstation 12 Pro及以上软件: 启动VMware Workstation 12 Pro程序,在 ...

  10. Oracle 重建控制文件一例

    环境:OEL 5.7 + Oracle 10.2.0.5 背景:在Oracle的运维过程中,时常会遇到一些场景是需要重建控制文件才可以解决的.本文的场景可以通过复制控制文件到新路径,运行一段时间后,再 ...