高斯消元(Gauss消元)
众所周知,高斯消元可以用来求n元一次方程组的,主要思想就是把一个n*(n+1)的矩阵的对角线消成1,除了第n+1列(用来存放b的)的其他全部元素消成0,是不是听起来有点不可思议??!
NO NO NO!
这不就是初中学的代入消元和加减消元嘛,思路一样的。
Step 1:将所给出的n元1次方程组的每个未知数系数和等号后面的常数写成一个n*(n+1)的矩阵
比如这个三元一次方程组我们就可以写成如下3×4的矩阵:
Step 2 :运用矩阵的各种性质,来将矩阵消成对角线上的元素为1,并且除了第n+1列其余元素均为0的矩阵,
这样我们就很容易的得出每个未知数的值:分别是从上到下第n+1列的值(因为这时候每个未知数的系数都为1)
那么是神马神奇性质呐???找度娘啊
(1) 任意交换矩阵的两行或两列,矩阵不变;
(2)矩阵任意行或列ai加上或减去任意k倍的任意行或列(ai行也可以加减k倍的ai行),矩阵不变;
………………………………
其余的性质这里就用不到啦,这两条性质足矣。
好啦,下面说一下怎么个消法(重点 嘤嘤嘤~)
以上面的矩阵为例:
明确我们的目的:把矩阵消成对角线为1,除了第n+1列其余元素都为0
也就是说,每一列都至少有一个元素不为0,若有一列全为0肯定有第i行第i列消不成1,此时无解
不理解的话也可以从方程组的数学角度来思考一下:
我们把每个未知数的系数写成矩阵,所以矩阵的某一列就是某一未知数的全部系数,
如果全为0,那么不就是没有这个未知数吗?那么这个未知数的值就不能确定了,那不就是无解吗?对吧。
知道了这个,我们就可以对这个矩阵进行初步判定:
for(int i=;i<=n;i++)
{
pl=i; //从第i行开始往下找,一直找到一个第i列不为0的行
while(a[pl][i]==&&pl<=n)
pl++;
// 判断第i列元素非0的最上行,因为第i行第i列元素不能为0
if(pl==n+) {cout<<"No Solution";return ;}
//一直判到了n+1行,可是一共才只有n行,说明有一列全为0,无解
for(int j=;j<=n+;j++)
//将第i行元素与第pl行第i列不为0的那一行与当前行交换
swap(a[i][j],a[pl][j]); //保证第i行第i列不为0
}
这样一来,我们就保证了第i行第i列的元素不为0,可是我们要让第i行第i列的值整成1啊,我们可以用性质(2),让第i行的每个元素都除以第i行第i列的值
注意:这里用到了除法,就有可能出现小数,所以我们要用double类型定义二维数组矩阵
double k=a[i][i]; //让第i行每个元素都除以a[i][i]使得a[i][i]为1
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //将第i行第i列的元素消成1,注意同行进行同样的操作
我们就让第i行第i列的元素搞成1列,继续完成接下来的任务:顺便把第i列的其他元素搞成0;
我们已经把第i行的搞成了1,所以我们只要把其余行的每个元素都减去本行的首元素*第i行的对应元素(为什么是第i行呢?仗着第i行第i列的元素是1比较好消)
for(int j=;j<=n;j++)
{
if(i!=j) //将第i列除了第i行的元素全消成0
{ //方法是第j行每个元素a[j][m]都减去a[j][1]*a[i][m]
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];
}
}
到这里就OK啦,最后输出第n+1列的元素就是每个未知数的解啦!
完整代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,pl;
double a[][];
int main()
{
cin>>n;
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
cin>>a[i][j];
for(int i=;i<=n;i++)
{
pl=i;
while(a[pl][i]==&&pl<=n)
pl++;
// 判断第i列首元素非0的最上行,因为第i行第i列元素不能为0
if(pl==n+) {cout<<"No Solution";return ;}
//一直判到了n+1行,可是一共才只有n行,说明有一列全为0,无解
for(int j=;j<=n+;j++) //将第i行第i列元素不为0的那一行与当前行交换
swap(a[i][j],a[pl][j]);
double k=a[i][i]; //让第i行每个元素都除以a[i][i]使得a[i][i]为1
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //将第i行第i列的元素消成1,注意同行进行同样的操作
for(int j=;j<=n;j++)
{
if(i!=j) //将第i列除了第i行的元素全消成0
{ //方法是第j行每个元素a[j][m]都减去a[j][1]*a[i][m]
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];
}
}
}
for(int i=;i<=n;i++)
printf("%.2lf\n",a[i][n+]);
return ;
}
QWQ,大家一定跃跃欲试了吧,给大家推荐一个洛谷板子题,巩固一下吧。
高斯消元(Gauss消元)的更多相关文章
- 高斯消元和高斯约旦消元 Gauss(-Jordan) Elimination
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵. 在讲算法前先介绍些概念 矩阵的初等变换 矩阵的初等变换又分为矩阵的初等行变换和矩阵的初等列变换 ...
- $Gauss$消元
$Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_ ...
- hdu 5755(Gauss 消元) &poj 2947
Gambler Bo Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Tota ...
- 求一个n元一次方程的解,Gauss消元
求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...
- Gauss 消元(模板)
/* title:Gauss消元整数解/小数解整数矩阵模板 author:lhk time: 2016.9.11 没学vim的菜鸡自己手打了 */ #include<cstdio> #in ...
- poj 1681(Gauss 消元)
Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5875 Accepted: 2825 ...
- POJ 1830 开关问题(Gauss 消元)
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7726 Accepted: 3032 Description ...
- (转)AS3正则:元子符,元序列,标志,数量表达符
(转)AS3正则:元子符,元序列,标志,数量表达符: AS3正则:元子符,元序列,标志,数量表达符 七月 4th, 2010 归类于 AS3前端技术 作者Linkjun 进行评论 as3正则:元子符, ...
- 5G套餐资费或为199元至599元,高昂价格会阻碍大众使用热情吗?
近段时间,运营商各种谜一般的操作让其走上舆论的风口浪尖,成为人们口诛笔伐的对象.比如在前段时间,运营商相继宣布要取消"达量降速版畅享套餐",对用户的权益造成巨大冲击,引发了网络热议 ...
随机推荐
- 2018年12月8日广州.NET微软技术俱乐部活动总结
吕毅写了一篇活动总结,写得很好!原文地址是:https://blog.walterlv.com/post/december-event-microsoft-technology-salon.html ...
- 关于如何使用xposed来hook某支付软件
由于近期有业务上的需要,所以特地花时间去研究了一下如何使用hook技术.但是当我把xposed环境和程序编写完成时,突然发现手机上的某个支付软件无法使用了.这个时候我意识到,应该是该软件的安全机制在起 ...
- virtual table for class
虚函数表 说起虚函数,相信你我都可以自然而然的想到“多态”,因为多态的实现就依赖于虚函数的继承和重写(覆盖).那么,class又或者是object是如何来管理虚函数的呢?你我又会想到虚函数表. 虚函数 ...
- gitbook 入门教程之常用命令详解
不论是 gitbook-cli 命令行还是 gitbook editor 编辑器都离不开 gitbook 命令的操作使用,所以再次了解下常用命令. 注意 gitbook-cli 是 gitbook 的 ...
- Python第四天 流程控制 if else条件判断 for循环 while循环
Python第四天 流程控制 if else条件判断 for循环 while循环 目录 Pycharm使用技巧(转载) Python第一天 安装 shell 文件 Python第二天 ...
- c/c++ 重载运算符 ==和!=的重载
重载运算符 ==和!=的重载 问题:假如有一个类似于vector的类,这个类只能存放string,当有2个这个类的对象时,如何比较这2个对象. 自己重载==和!= 代码(重载==,!=) #inclu ...
- it's time to change myself now (2018.10.31)
自16年从新屋熊职校毕业,入职深圳某厂从事云存储两年半了.两年半的时间很快,快的感觉一生都会飞快,两年多一直很忙,忙的几乎忘了自己是否正向改变过. 正向改变,or 积极改变,今年十一回家,与几个好友小 ...
- css_选择器
老师的博客:https://www.cnblogs.com/liwenzhou/p/7999532.html 参考w3 school:http://www.w3school.com.cn/css/cs ...
- DeveloperGuide Hive UDF
Creating Custom UDFs First, you need to create a new class that extends UDF, with one or more method ...
- 在Windows下使用Git+TortoiseGit+码云管理项目代码
1. 安装Git 下载地址:点击打开链接 安装指南:默认选项即可 2. 安装TortoiseGit 下载地址:点击打开链接 安装指南:点击打开链接 3. 在码云创建账号, ...