高斯消元(Gauss消元)
众所周知,高斯消元可以用来求n元一次方程组的,主要思想就是把一个n*(n+1)的矩阵的对角线消成1,除了第n+1列(用来存放b的)的其他全部元素消成0,是不是听起来有点不可思议??!
NO NO NO!
这不就是初中学的代入消元和加减消元嘛,思路一样的。
Step 1:将所给出的n元1次方程组的每个未知数系数和等号后面的常数写成一个n*(n+1)的矩阵
比如这个三元一次方程组我们就可以写成如下3×4的矩阵:
Step 2 :运用矩阵的各种性质,来将矩阵消成对角线上的元素为1,并且除了第n+1列其余元素均为0的矩阵,
这样我们就很容易的得出每个未知数的值:分别是从上到下第n+1列的值(因为这时候每个未知数的系数都为1)
那么是神马神奇性质呐???找度娘啊
(1) 任意交换矩阵的两行或两列,矩阵不变;
(2)矩阵任意行或列ai加上或减去任意k倍的任意行或列(ai行也可以加减k倍的ai行),矩阵不变;
………………………………
其余的性质这里就用不到啦,这两条性质足矣。
好啦,下面说一下怎么个消法(重点 嘤嘤嘤~)
以上面的矩阵为例:
明确我们的目的:把矩阵消成对角线为1,除了第n+1列其余元素都为0
也就是说,每一列都至少有一个元素不为0,若有一列全为0肯定有第i行第i列消不成1,此时无解
不理解的话也可以从方程组的数学角度来思考一下:
我们把每个未知数的系数写成矩阵,所以矩阵的某一列就是某一未知数的全部系数,
如果全为0,那么不就是没有这个未知数吗?那么这个未知数的值就不能确定了,那不就是无解吗?对吧。
知道了这个,我们就可以对这个矩阵进行初步判定:
for(int i=;i<=n;i++)
{
pl=i; //从第i行开始往下找,一直找到一个第i列不为0的行
while(a[pl][i]==&&pl<=n)
pl++;
// 判断第i列元素非0的最上行,因为第i行第i列元素不能为0
if(pl==n+) {cout<<"No Solution";return ;}
//一直判到了n+1行,可是一共才只有n行,说明有一列全为0,无解
for(int j=;j<=n+;j++)
//将第i行元素与第pl行第i列不为0的那一行与当前行交换
swap(a[i][j],a[pl][j]); //保证第i行第i列不为0
}
这样一来,我们就保证了第i行第i列的元素不为0,可是我们要让第i行第i列的值整成1啊,我们可以用性质(2),让第i行的每个元素都除以第i行第i列的值
注意:这里用到了除法,就有可能出现小数,所以我们要用double类型定义二维数组矩阵
double k=a[i][i]; //让第i行每个元素都除以a[i][i]使得a[i][i]为1
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //将第i行第i列的元素消成1,注意同行进行同样的操作
我们就让第i行第i列的元素搞成1列,继续完成接下来的任务:顺便把第i列的其他元素搞成0;
我们已经把第i行的搞成了1,所以我们只要把其余行的每个元素都减去本行的首元素*第i行的对应元素(为什么是第i行呢?仗着第i行第i列的元素是1比较好消)
for(int j=;j<=n;j++)
{
if(i!=j) //将第i列除了第i行的元素全消成0
{ //方法是第j行每个元素a[j][m]都减去a[j][1]*a[i][m]
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];
}
}
到这里就OK啦,最后输出第n+1列的元素就是每个未知数的解啦!
完整代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,pl;
double a[][];
int main()
{
cin>>n;
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
cin>>a[i][j];
for(int i=;i<=n;i++)
{
pl=i;
while(a[pl][i]==&&pl<=n)
pl++;
// 判断第i列首元素非0的最上行,因为第i行第i列元素不能为0
if(pl==n+) {cout<<"No Solution";return ;}
//一直判到了n+1行,可是一共才只有n行,说明有一列全为0,无解
for(int j=;j<=n+;j++) //将第i行第i列元素不为0的那一行与当前行交换
swap(a[i][j],a[pl][j]);
double k=a[i][i]; //让第i行每个元素都除以a[i][i]使得a[i][i]为1
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //将第i行第i列的元素消成1,注意同行进行同样的操作
for(int j=;j<=n;j++)
{
if(i!=j) //将第i列除了第i行的元素全消成0
{ //方法是第j行每个元素a[j][m]都减去a[j][1]*a[i][m]
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];
}
}
}
for(int i=;i<=n;i++)
printf("%.2lf\n",a[i][n+]);
return ;
}
QWQ,大家一定跃跃欲试了吧,给大家推荐一个洛谷板子题,巩固一下吧。
高斯消元(Gauss消元)的更多相关文章
- 高斯消元和高斯约旦消元 Gauss(-Jordan) Elimination
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵. 在讲算法前先介绍些概念 矩阵的初等变换 矩阵的初等变换又分为矩阵的初等行变换和矩阵的初等列变换 ...
- $Gauss$消元
$Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_ ...
- hdu 5755(Gauss 消元) &poj 2947
Gambler Bo Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Tota ...
- 求一个n元一次方程的解,Gauss消元
求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...
- Gauss 消元(模板)
/* title:Gauss消元整数解/小数解整数矩阵模板 author:lhk time: 2016.9.11 没学vim的菜鸡自己手打了 */ #include<cstdio> #in ...
- poj 1681(Gauss 消元)
Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5875 Accepted: 2825 ...
- POJ 1830 开关问题(Gauss 消元)
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7726 Accepted: 3032 Description ...
- (转)AS3正则:元子符,元序列,标志,数量表达符
(转)AS3正则:元子符,元序列,标志,数量表达符: AS3正则:元子符,元序列,标志,数量表达符 七月 4th, 2010 归类于 AS3前端技术 作者Linkjun 进行评论 as3正则:元子符, ...
- 5G套餐资费或为199元至599元,高昂价格会阻碍大众使用热情吗?
近段时间,运营商各种谜一般的操作让其走上舆论的风口浪尖,成为人们口诛笔伐的对象.比如在前段时间,运营商相继宣布要取消"达量降速版畅享套餐",对用户的权益造成巨大冲击,引发了网络热议 ...
随机推荐
- 使用代码检查Dynamics 365中的备用键状态
摘要: 微软动态CRM专家罗勇 ,回复304或者20190213可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 备用键(Al ...
- 广州.NET微软技术俱乐部 - 动手实验室
本文正在写草稿中, 发布时会在群里单独通知
- Bootstrap-table 部分浏览器显示不出来
一.问题 近日,写了一个ASP.Net项目,但是bootstrap-table在别人的电脑上显示不出来,在自己的电脑上能显示,有些浏览器也是能显示,但部分浏览器就是显示不出来.找了很多原因,最后有个老 ...
- H-ui框架信息图标点击跳出页面问题
在html中为消息a标签添加id: 在static/h-ui/js/H-ui.min.js添加事件:
- MySQL外键设置中的的 Cascade、NO ACTION、Restrict、SET NULL
例如: ALTER TABLE stuinfo ADD CONSTRAINT fk_stuinfo FOREIGN KEY(gradeid) REFERENCES grade(id) ON DELET ...
- python(day17)二分查找
l = [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31] def find(l ,aim ,start = 0,end = None): end = len(l ...
- SQL Server查看视图定义总结
在SQL Server中如何查看数据库视图的定义呢? 其实官方文档已经有一个较详细的总结了,这里在官方文档的基础上,我们再深入展开分析一下,例如如何获取系统视图的定义.知其然知其所以然吗. 1:使 ...
- HybridStart发布v1.0测试版
HybridStart是一款多webview模式的混合应用前端开发框架,本来只是作者自用的一套混合应用开发模板,为了进一步提高混合应用开发效率,近期着重在框架高通用性和易用性方面做了较大改进,比如将U ...
- Python基础——3特性
特性 切片 L=[0,1,2,3,4,5,6,7,8,9,10] L[:3]=[0,1,2] L[-2:]=[9,10] L[1:3]=[1,2] L[::3]=[0,3,6,9] L[:5:2]=[ ...
- 【English】20190418
interested 感兴趣的[ˈɪntrəstɪd] arrange your time 安排自己时间[əˈreɪndʒ] If interested, please arrange your ti ...