众所周知,高斯消元可以用来求n元一次方程组的,主要思想就是把一个n*(n+1)的矩阵的对角线消成1,除了第n+1列(用来存放b的)的其他全部元素消成0,是不是听起来有点不可思议??!

NO NO NO!


这不就是初中学的代入消元和加减消元嘛,思路一样的。

Step 1:将所给出的n元1次方程组的每个未知数系数和等号后面的常数写成一个n*(n+1)的矩阵

比如这个三元一次方程组我们就可以写成如下3×4的矩阵:

Step 2 :运用矩阵的各种性质,来将矩阵消成对角线上的元素为1,并且除了第n+1列其余元素均为0的矩阵,

这样我们就很容易的得出每个未知数的值:分别是从上到下第n+1列的值(因为这时候每个未知数的系数都为1)

那么是神马神奇性质呐???找度娘啊

(1) 任意交换矩阵的两行或两列,矩阵不变;

(2)矩阵任意行或列ai加上或减去任意k倍的任意行或列(ai行也可以加减k倍的ai行),矩阵不变;

………………………………

其余的性质这里就用不到啦,这两条性质足矣。

好啦,下面说一下怎么个消法(重点 嘤嘤嘤~)

以上面的矩阵为例:

明确我们的目的:把矩阵消成对角线为1,除了第n+1列其余元素都为0

也就是说,每一列都至少有一个元素不为0,若有一列全为0肯定有第i行第i列消不成1,此时无解

不理解的话也可以从方程组的数学角度来思考一下:

我们把每个未知数的系数写成矩阵,所以矩阵的某一列就是某一未知数的全部系数,

如果全为0,那么不就是没有这个未知数吗?那么这个未知数的值就不能确定了,那不就是无解吗?对吧。

知道了这个,我们就可以对这个矩阵进行初步判定:

for(int i=;i<=n;i++)
{
pl=i; //从第i行开始往下找,一直找到一个第i列不为0的行
while(a[pl][i]==&&pl<=n)
pl++;
// 判断第i列元素非0的最上行,因为第i行第i列元素不能为0
if(pl==n+) {cout<<"No Solution";return ;}
//一直判到了n+1行,可是一共才只有n行,说明有一列全为0,无解
for(int j=;j<=n+;j++)
//将第i行元素与第pl行第i列不为0的那一行与当前行交换
swap(a[i][j],a[pl][j]); //保证第i行第i列不为0
}

这样一来,我们就保证了第i行第i列的元素不为0,可是我们要让第i行第i列的值整成1啊,我们可以用性质(2),让第i行的每个元素都除以第i行第i列的值

注意:这里用到了除法,就有可能出现小数,所以我们要用double类型定义二维数组矩阵

        double k=a[i][i];                          //让第i行每个元素都除以a[i][i]使得a[i][i]为1
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //将第i行第i列的元素消成1,注意同行进行同样的操作

我们就让第i行第i列的元素搞成1列,继续完成接下来的任务:顺便把第i列的其他元素搞成0;

我们已经把第i行的搞成了1,所以我们只要把其余行的每个元素都减去本行的首元素*第i行的对应元素(为什么是第i行呢?仗着第i行第i列的元素是1比较好消)

        for(int j=;j<=n;j++)
{
if(i!=j) //将第i列除了第i行的元素全消成0
{ //方法是第j行每个元素a[j][m]都减去a[j][1]*a[i][m]
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];
}
}

到这里就OK啦,最后输出第n+1列的元素就是每个未知数的解啦!

完整代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,pl;
double a[][];
int main()
{
cin>>n;
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
cin>>a[i][j];
for(int i=;i<=n;i++)
{
pl=i;
while(a[pl][i]==&&pl<=n)
pl++;
// 判断第i列首元素非0的最上行,因为第i行第i列元素不能为0
if(pl==n+) {cout<<"No Solution";return ;}
//一直判到了n+1行,可是一共才只有n行,说明有一列全为0,无解
for(int j=;j<=n+;j++) //将第i行第i列元素不为0的那一行与当前行交换
swap(a[i][j],a[pl][j]);
double k=a[i][i]; //让第i行每个元素都除以a[i][i]使得a[i][i]为1
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //将第i行第i列的元素消成1,注意同行进行同样的操作
for(int j=;j<=n;j++)
{
if(i!=j) //将第i列除了第i行的元素全消成0
{ //方法是第j行每个元素a[j][m]都减去a[j][1]*a[i][m]
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];
}
}
}
for(int i=;i<=n;i++)
printf("%.2lf\n",a[i][n+]);
return ;
}

QWQ,大家一定跃跃欲试了吧,给大家推荐一个洛谷板子题,巩固一下吧。

【模板】高斯消元法

高斯消元(Gauss消元)的更多相关文章

  1. 高斯消元和高斯约旦消元 Gauss(-Jordan) Elimination

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵. 在讲算法前先介绍些概念 矩阵的初等变换 矩阵的初等变换又分为矩阵的初等行变换和矩阵的初等列变换 ...

  2. $Gauss$消元

    $Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_ ...

  3. hdu 5755(Gauss 消元) &poj 2947

    Gambler Bo Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tota ...

  4. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

  5. Gauss 消元(模板)

    /* title:Gauss消元整数解/小数解整数矩阵模板 author:lhk time: 2016.9.11 没学vim的菜鸡自己手打了 */ #include<cstdio> #in ...

  6. poj 1681(Gauss 消元)

    Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5875   Accepted: 2825 ...

  7. POJ 1830 开关问题(Gauss 消元)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description ...

  8. (转)AS3正则:元子符,元序列,标志,数量表达符

    (转)AS3正则:元子符,元序列,标志,数量表达符: AS3正则:元子符,元序列,标志,数量表达符 七月 4th, 2010 归类于 AS3前端技术 作者Linkjun 进行评论 as3正则:元子符, ...

  9. 5G套餐资费或为199元至599元,高昂价格会阻碍大众使用热情吗?

    近段时间,运营商各种谜一般的操作让其走上舆论的风口浪尖,成为人们口诛笔伐的对象.比如在前段时间,运营商相继宣布要取消"达量降速版畅享套餐",对用户的权益造成巨大冲击,引发了网络热议 ...

随机推荐

  1. Lyndon Word学习笔记

    Lyndon Word 定义:对于字符串\(s\),若\(s\)的最小后缀为其本身,那么称\(s\)为Lyndon串 等价性:\(s\)为Lyndon串等价于\(s\)本身是其循环移位中最小的一个 性 ...

  2. MySQL 基础知识梳理学习(五)----详解MySQL两次写的设计及实现

    一 . 两次写提出的背景或要解决的问题 两次写(InnoDB Double Write)是Innodb中很独特的一个功能点.因为Innodb中的日志是逻辑的,所谓逻辑就是比如插入一条记录时,它可能会在 ...

  3. Linux LVM学习总结——Insufficient Free Extents for a Logical Volume

    如下所示,在创建LV的时候,偶尔会遇到"Volume group "xxxx" has insufficient free space (xxxx extents): x ...

  4. jquery获取url的方式

    (function ($) { $.getUrlParam = function (name) { var reg = new RegExp("(^|&)" + name ...

  5. chome(谷歌浏览器)上传文件崩溃/上传图片崩溃/打开浏览文件未响应 解决方案

    测试解决方案:关闭搜狗输入法(我用的是搜狗输入法,若使用其他输入法,此方案也可能适用),再测试是否重现浏览器崩溃问题 可选解决方案:升级搜狗输入法(如果想 卸载输入法 也可以) 前面有段时间chome ...

  6. windows10 1903 64位系统

    近日,微软完成并开始推送Windows 10 2019年的第一个重大升级的预览版本,版本号是v1903,命名则是2019年5月更新版. 点击下载windows10

  7. Unix、Windows、Mac OS、Linux系统故事

    我们熟知的操作系统大概都是windows系列,近年来Apple的成功,让MacOS也逐渐走进普通用户.在服务器领域,恐怕Linux是无人不知无人不晓.他们都是操作系统,也在自己的领域里独领风骚.这都还 ...

  8. LeetCode算法题-Baseball Game(Java实现)

    这是悦乐书的第288次更新,第305篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第156题(顺位题号是682).你现在是棒球比赛点记录器.给定一个字符串列表,每个字符串 ...

  9. Python 函数调用&定义函数&函数参数

    一.函数调用 在python中内置了很多函数,我们可以直接调用 .想要调用函数首先要知道函数的名称及包含的参数,还可以通过查看python官方的文档:https://docs.python.org/3 ...

  10. June. 22 2018, Week 25th. Friday

    Where words fail, music speaks. 言语无法表达时,音乐就会响起. From Hans Christian Andersen. Where words fail, musi ...