linux epoll系列2 利用epoll_wait查看是否可以送信

write函数本来是非阻塞函数,但是当缓存区被写满后,再往缓存区里写的时候,就必须等待缓存区再次变成可写,所以这是write就变成了阻塞了,这个进程或者线程就堵住了,不能被响应了。

epoll_wait函数可以判断出,缓存区是否可写,可写后再调用write函数,这样就避免了write函数被阻塞。

例子1,是接收端。

例子2, 是会发生阻塞的发送端。

例子3,利用了epoll_wait,所以是不会发生阻塞的。

例子1,接收端

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/epoll.h>
#include <arpa/inet.h> int main(){
int sock0;
sockaddr_in addr;
sockaddr_in client;
socklen_t len;
int sock;
int n;
char buf[65536];
int i; sock0 = socket(AF_INET, SOCK_STREAM, 0); addr.sin_family = AF_INET;
addr.sin_port = htons(12345);
addr.sin_addr.s_addr = INADDR_ANY;
bind(sock0, (sockaddr*)&addr, sizeof(addr)); listen(sock0, 5); len = sizeof(client);
sock = accept(sock0, (sockaddr*)&client, &len); printf("after accept\n"); for(i = 0; i < 10; ++i){
sleep(2);
n = read(sock, buf, sizeof(buf));
printf("recv data size:[%d] bytes\n", n);
} printf("close socket and finish\n"); close(sock); return 0;
}

github源代码

例子2, 是会发生阻塞的发送端。

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/epoll.h>
#include <arpa/inet.h> int main(){
sockaddr_in server;
int sock;
char buf[65536];
int n; sock = socket(AF_INET, SOCK_STREAM, 0); server.sin_family = AF_INET;
server.sin_port = htons(12345); inet_pton(AF_INET, "127.0.0.1", &server.sin_addr.s_addr); n = connect(sock, (sockaddr*)&server, sizeof(server));
if(n != 0){
perror("connect");
return 1;
} int cnt = 0;
while(1){
++cnt;
printf("[%d]write %ld bytes\n", cnt, sizeof(buf));
n = write(sock, buf, sizeof(buf));
if(n <= 0){
printf("write error:%d\n", n);
break;
}
} close(sock); return 0; }

github源代码

例子3,利用了epoll_wait,所以是不会发生阻塞的。

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/epoll.h>
#include <arpa/inet.h> #define EVENTS 12 int main(){
sockaddr_in server;
epoll_event ev, ev_ret[EVENTS];
int sock, epfd;
char buf[65536];
int nfds;
int n; sock = socket(AF_INET, SOCK_STREAM, 0); server.sin_family = AF_INET;
server.sin_port = htons(12345); inet_pton(AF_INET, "127.0.0.1", &server.sin_addr.s_addr); n = connect(sock, (sockaddr*)&server, sizeof(server));
if(n != 0){
perror("connect");
return 1;
} epfd = epoll_create(2);
if(epfd < 0){
perror("epfd");
return 1;
} memset(&ev, 0, sizeof(ev));
ev.events = EPOLLOUT;//可写
ev.data.fd = sock;
if(epoll_ctl(epfd, EPOLL_CTL_ADD, sock, &ev) != 0){
perror("epoll_clt");
return 1;
} int cnt = 0;
while(1){
cnt++;
printf("before epoll wait\n"); nfds = epoll_wait(epfd, ev_ret, EVENTS, -1);
if(nfds < 0){
perror("epoll_wait");
return 1;
} printf("after epoll_wait\n"); if(ev_ret[0].data.fd == sock){
printf("[%d]write %ld types\n", cnt, sizeof(buf)); n = write(sock, buf, sizeof(buf));
if(n <= 0){
printf("write error:%d\n", n);
break;
}
}
} close(sock);
return 0;
}

github源代码

运行方法:先运行接收端,再运行阻塞发送端。

从运行结果可以看出:阻塞的发送端,缓存区溢出后,write函数变成阻塞的了。

运行方法:先运行接收端,再运行非阻塞发送端。

从运行结果可以看出:非阻塞的发送端,缓存区溢出后,write函数是没有被调用的。

c/c++ 学习互助QQ群:877684253

本人微信:xiaoshitou5854

c/c++ linux epoll系列2 利用epoll_wait查看是否可以送信的更多相关文章

  1. c/c++ linux epoll系列3 利用epoll_wait设置timeout时间长度

    linux epoll系列3 利用epoll_wait设置timeout时间长度 epoll_wait函数的第四个参数可以设置,epoll_wait函数的等待时间(timeout时间长度). 例子1, ...

  2. c/c++ llinux epoll系列4 利用epoll_wait实现非阻塞的connect

    llinux epoll系列4 利用epoll_wait实现非阻塞的connect connect函数是阻塞的,而且不能设置connect函数的timeout时间,所以一旦阻塞太长时间,影响用户的体验 ...

  3. c/c++ llinux epoll系列5 解除epoll_wait状态

    linux epoll系列5 解除epoll_wait状态 有时候会有解除epoll_wait状态的需求. 实现方法: 1,给执行epoll_wait的程序发signal. 2,使用sockpair. ...

  4. c/c++ linux epoll系列1 创建epoll

    linux epoll系列1 创建epoll 据说select和poll的弱点是,随着连接(socket)的增加,性能会直线下降. epoll不会随着连接(socket)的增加,性能直线下降. 知识点 ...

  5. Linux NIO 系列(04-4) select、poll、epoll 对比

    目录 一.API 对比 1.1 select API 1.2 poll API 1.3 epoll API 二.总结 2.1 支持一个进程打开的 socket 描述符(FD)不受限制(仅受限于操作系统 ...

  6. Linux NIO 系列(04-3) epoll

    目录 一.why epoll 1.1 select 模型的缺点 1.2 epoll 模型优点 二.epoll API 2.1 epoll_create 2.2 epoll_ctl 2.3 epoll_ ...

  7. Windows完成端口与Linux epoll技术简介

    收藏自:http://www.cnblogs.com/cr0-3/archive/2011/09/09/2172280.html WINDOWS完成端口编程1.基本概念2.WINDOWS完成端口的特点 ...

  8. epoll 系列函数简介、与select、poll 的区别

    一.epoll 系列函数简介 #include <sys/epoll.h> int epoll_create(int size); int epoll_create1(int flags) ...

  9. Java网络编程和NIO详解6:Linux epoll实现原理详解

    Java网络编程和NIO详解6:Linux epoll实现原理详解 本系列文章首发于我的个人博客:https://h2pl.github.io/ 欢迎阅览我的CSDN专栏:Java网络编程和NIO h ...

随机推荐

  1. RabbitQM(消息duilie)

    前言:RabbitMQ 是实现 AMQP(Advanced Message Queuing Protocol 高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息, ...

  2. 【Kafka专栏】-Kafka从初始到搭建到应用

    一.前述 Kafka是一个分布式的消息队列系统(Message Queue). kafka集群有多个Broker服务器组成,每个类型的消息被定义为topic. 同一topic内部的消息按照一定的key ...

  3. 汇编语言 实验14 访问CMOS RAM

    汇编语言 访问CMOS RAM CMOS RAM 是什么? 存放计算机开机必备的一些数据的硬件,由BIOS(Basic input/output system)调用其数据. 怎么用? 首先要理解端口的 ...

  4. 使用QuertZ组件来搞项目工作流(一)

    前言:抛弃windows计划,拥抱.NET组件.每个人都喜欢监听和插件.今天,几乎下载任何开源框架,你必定会发现支持这两个概念.监听是你创建的C#类,当关键事件发生时会收到框架的回调.例如,当一个作业 ...

  5. RabbitMQ学习笔记(五) Topic

    更多的问题 Direct Exchange帮助我们解决了分类发布与订阅消息的问题,但是Direct Exchange的问题是,它所使用的routingKey是一个简单字符串,这决定了它只能按照一个条件 ...

  6. MySQL 的性能(上篇)—— SQL 执行分析

    简介 文中内容均为阅读前辈的文章所整理而来,参考文章已在最后全指明 本文分为上下两篇: 上篇:MySQL 的 SQL 执行分析 下篇:MySQL 性能优化 后端开发必然会接触到数据库,数据层的优劣会影 ...

  7. [Python]peewee 使用经验

    peewee 使用经验 本文使用案例是基于 python2.7 实现 以下内容均为个人使用 peewee 的经验和遇到的坑,不会涉及过多的基本操作.所以,没有使用过 peewee,可以先阅读文档 正确 ...

  8. Chapter 5 Blood Type——29

    "We're meeting at my dad's store, at ten." “十点,我们在我爸的店见面.” His eyes flickered to Edward ag ...

  9. 【ASP.NET Core快速入门】(十五)MVC开发:ReturnUrl实现、Model后端验证 、Model前端验证

    ReturnUrl实现 我们要实现returnUrl,我们需要在注册(Register)方法中接收传进的returnUrl并给它默认值null,然后将它保存在ViewData里面 然后我们定义一个内部 ...

  10. msf登陆Windows 2

    使用ms17_010(永恒之蓝)进行攻击登陆(XP) 1)加载模块 2)连接靶机 3)设置payload 4)设置lhost(攻击主机IP) 5)exploit进行攻击登陆