给出1-n的序列插入一个bst;

给出T组询问,包含n,h分别代表点数为n,高度为h的树,求所有插入顺序的合法方案数,模1e9+7

样例输入

1

2  1

样例输出

2

#include<bits/stdc++.h>
#define LL long long
#define rep(i,x,y) for(register int i=x;i<=y;i++)
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+(ch^);ch=getchar();}
return x*f;} const int N=;
const int mod=;
LL C[N][N],f[N][N],g[N];
int T;
int main(){
freopen("bst.in","r",stdin);
freopen("bst.out","w",stdout); int nn=,hh=;
rep(i,,nn) C[i][]=;C[][]=;
rep(i,,nn)rep(j,,i)
C[i][j]=1LL*(C[i-][j-]+C[i-][j])%mod; memset(g,,sizeof g);
memset(f,,sizeof f);
f[][]=g[]=;
rep(i,,hh){
rep(j,,nn)if(f[i][j])rep(k,,nn-j-)
f[i+][j+k+]=(f[i+][j+k+]+1LL*f[i][j]*(g[k]*+f[i][k])%mod*C[j+k][j]%mod)%mod;
rep(j,,nn) g[j]=(g[j]+f[i][j])%mod;} T=read();while(T--){
int n=read(),h=read();
printf("%lld\n",f[h+][n]);}
return ;}

我们考虑点数n+1,我们发现序列内部的顺序并没有什么卵用,而且树的形状发现有递归的情况

那么dp[i][j] 代表 高度为i点数为j 的方案数

刷表法更加好用,所以转移方程可以转化为

dp[i+1][j+k+1]+=dp[i][j]*dp[i(0-i)][k]*C[j+k][j]

我们发现两个子树中至少有一个的高度是h,剩下一个需要利用前缀和保存以平衡复杂度

那么大力枚举高度i,并更新点j由1-n,更新答案,最终将所有点在此高度下的情况前缀和更新

完结撒花

模拟赛20181016 dp的更多相关文章

  1. 模拟赛20181016 Uva 1040 状压+搜索 2005 ACM world final problem c

    题目的隐含条件将这道题指向了最小生成树: 利用类似prim的方法,枚举所有子图并判断是否包含询问点,如果包含那么可以更新答案: 边统计边更新,且由于更新一定是向更多的点状态下更新,所以一定可以统计到答 ...

  2. [10.18模拟赛] 序列 (DP)

    [10.18模拟赛] 序列 题目描述 山山有一个整数序列s1,s2,-,sn,其中1≤si≤k. 求出有多少个准确移除m个元素后不同的序列.答案模(1e9+7) 输入 输入包括几个测试用例,并且由文件 ...

  3. [8.16模拟赛] 玩具 (dp/字符串)

    题目描述 儿时的玩具总是使我们留恋,当小皮还是个孩子的时候,对玩具更是情有独钟.小皮是一个兴趣爱好相当广泛且不专一的人,这这让老皮非常地烦恼.也就是说,小皮在不同时刻所想玩的玩具总是会不同,而有心的老 ...

  4. 放棋游戏(NOIP模拟赛)(DP)

    没有原题... 囧.. [问题描述] 游戏规则是这样,有n(1<=n<=100)行格子,第一行由n个格子,第二行有n-1个格子,第三行由n-2个格子,……以此类推,第n行有1个格子.要求再 ...

  5. 98: 模拟赛-神光 dp

    $code$ #include <cstdio> #include <cstring> #include <algorithm> using namespace s ...

  6. NOIp模拟赛 现实(DP 拓扑)

    题目来源:by lzz \(Description\) 给定一张有向图,求对于哪些点,删除它和它的所有连边后,图没有环. \(n\leq 5\times10^5,m\leq 10^6\). \(Sol ...

  7. 83: 模拟赛 树形dp

    $des$ $sol$ 维护每个点的子树中的信息以及非子树的信息 $code$ #include <bits/stdc++.h> using namespace std; #define ...

  8. 7.1 NOI模拟赛 计数问题 dp

    还是可以想出来的题目 不过考场上没有想出来 要 引以为戒. 初看觉得有点不可做 10分给到了爆搜. 考虑第一个特殊情况 B排列为1~m. 容易发现A排列中前m个数字 他们之间不能产生交换 且 第k个数 ...

  9. 【noip模拟赛5】细菌 状压dp

    [noip模拟赛5]细菌   描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...

随机推荐

  1. Delphi 数据转换

    指针转换   Pointer——string string:=PChar(Pointer);{ Pointer指向的数据要以#0结尾.使用System.AllocMem(Size)分配的内存是用#0填 ...

  2. C# -- 等待异步操作执行完成的方式

    C# -- 等待异步操作执行完成的方式 1. 等待异步操作的完成,代码实现: class Program { static void Main(string[] args) { Func<int ...

  3. July 12th, 2018. Thursday, Week 28th.

    People love what other people are passionate about. 人总是会爱上别人倾注热情的事物. From La La Land. This quote has ...

  4. linux下的别名机制

    相当于用户自己创建一个属于自己的命令.在当前用户的家目录下有一个.bashrc文件,编辑该文件: eg:alias cls='clear' 如果命令要生效需要重新登录.用户输入cls就可以达到清屏的目 ...

  5. Jquery消息提示插件toastr使用详解

    toastr是一个基于jQuery简单.漂亮的消息提示插件,使用简单.方便,可以根据设置的超时时间自动消失. 1.使用很简单,首选引入toastr的js.css文件 html <script s ...

  6. MacOS 的预览 Preview 打开pdf 容易卡死 解决方案

    MacOs 10.13.6 打开pdf之后容易卡死. 移动一下窗口之后就卡死了. 有时候等一会还能缓过来,有时候就缓不过来了. 只要执行下这个命令就可以了. sudo rm -rf ~/Library ...

  7. 新人大餐:2018最新Office插件开发之ExcelDNA开发XLL插件免费教学视频,五分钟包教包会

    原始链接:https://www.cnblogs.com/Charltsing/p/ExcelDnaVideoCourse.html QQ: 564955427 先解释一下,为什么要做这个视频: 我在 ...

  8. 我的工具:Ping工具

    C# Ping工具 通过该工具可以多个地点Ping服务器以检测服务器响应速度,同时也可以测试网站的响应速度,解析时间,服务器连接时间,下载速度 工具下载地址:https://download.csdn ...

  9. Linux如何管理目录和文件属性

    概述:在Linux文件系统的安全模型中,为系统中的文件(或目录)赋予了两个属性:访问权限和文件所有者,简称为“权限”和“归属”.其中,访问权限包括读取.写入.可执行三种基本类型,归属包括属主(拥有该文 ...

  10. Linux调整日期时间

    Linux日期不准确,要更改 Linux 系统整个系统范围的时区可以使用如下命令: sudo rm -f /etc/localtime sudo ln -s /usr/share/zoneinfo/A ...